Sapru Shradha, Hart Kelle D, Zhou Chengshuang, Liccardo Gennaro, Oh Jinwon, Hollobaugh Margaret J, Osio-Norgaard Jorge, Majumdar Arun, Chandler Bert D, Cargnello Matteo
Department of Chemistry, Stanford University, Stanford, California 94305, United States.
Department of Chemistry, Pennsylvania State University, State College, Pennsylvania 16802, United States.
ACS Nano. 2025 Jan 21;19(2):2484-2496. doi: 10.1021/acsnano.4c13606. Epub 2025 Jan 8.
Carbon capture and utilization involve multiple energy- and cost-intensive steps. Dual-function materials (DFMs) can reduce these demands by coupling CO adsorption and conversion into a single material with two functionalities: a sorbent phase and a metal for catalytic CO conversion. The role of metal catalysts in the conversion process seems salient from previous work, but the underlying mechanisms remain elusive and deserve deeper investigation to achieve maximum utilization of the two phases. Here, preformed colloidal Ru nanoparticles were deposited onto a "NaO"/AlO sorbent to prepare prototypical DFMs with controlled phases for CO capture and hydrogenation to CH. Ru addition was found to double the high-temperature CO adsorption capacity by activating the "NaO"/AlO sorbent phase during a reductive pretreatment step. Most importantly, low Ru loadings were sufficient to ensure maximum CO adsorption and conversion. This was attributed to the key role of the metal-sorbent interactions, wherein Ru was required to hydrogenate strongly bound CO on the "NaO"/AlO sorbent to CH via the H activated on Ru. This interaction facilitated rate-determining carbonate migration and subsequent hydrogenation at the metal-sorbent interface. Overall, Ru controlled the CO hydrogenation reaction rate, while the "NaO"/AlO sorbent dictated the CO uptake capacity. By controlling metal-sorbent interactions at the molecular level, we demonstrate the critical role of the two phases and their synergy, facilitating the design of DFMs with maximum CO capture and conversion efficiency.
碳捕获与利用涉及多个能源密集型和成本密集型步骤。双功能材料(DFMs)可以通过将CO吸附和转化耦合到一种具有两种功能的单一材料中来降低这些需求:一个吸附剂相和一种用于催化CO转化的金属。从先前的工作来看,金属催化剂在转化过程中的作用似乎很突出,但潜在机制仍然难以捉摸,值得深入研究以实现两相的最大利用。在这里,将预先形成的胶体Ru纳米颗粒沉积在“NaO”/AlO吸附剂上,以制备具有可控相的典型DFMs,用于CO捕获和加氢生成CH。研究发现,通过在还原预处理步骤中激活“NaO”/AlO吸附剂相,添加Ru可使高温CO吸附容量翻倍。最重要的是,低Ru负载量足以确保最大的CO吸附和转化。这归因于金属-吸附剂相互作用的关键作用,其中需要Ru通过在Ru上活化的H将“NaO”/AlO吸附剂上强吸附的CO加氢生成CH。这种相互作用促进了决定反应速率的碳酸盐迁移以及随后在金属-吸附剂界面处的加氢反应。总体而言,Ru控制着CO加氢反应速率,而“NaO”/AlO吸附剂决定了CO的吸收容量。通过在分子水平上控制金属-吸附剂相互作用,我们证明了两相及其协同作用的关键作用,有助于设计具有最大CO捕获和转化效率的DFMs。