Yang Dongchang, Youden Brian, Yu Naizhen, Carrier Andrew J, Jiang Runqing, Servos Mark R, Oakes Ken D, Zhang Xu
Department of Chemistry, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada.
Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
ACS Nano. 2025 Jan 21;19(2):2013-2028. doi: 10.1021/acsnano.4c15509. Epub 2025 Jan 8.
Reactive oxygen species (ROS) play fundamental roles in various biological and chemical processes in nature and industries, including cell signaling, disease development and aging, immune defenses, environmental remediation, pharmaceutical syntheses, metal corrosion, energy production, etc. As such, their detection is of paramount importance, but their accurate identification and quantification are technically challenging due to their transient nature with short lifetimes and low steady-state concentrations. As a highly sensitive and selective analytical technique, surface-enhanced Raman spectroscopy (SERS) is promising for detecting ROS in real-time, enabling in situ monitoring of ROS-involved electrochemical and biochemical events with exceptional resolution. This review provides a comprehensive analysis of the state-of-the-art in the SERS-based detection of ROS. Herein, the principles and ROS sensing mechanisms of SERS have been critically evaluated, highlighting their emerging applications in direct and indirect ROS monitoring in electrochemical and biological systems. The developments and reaction schemes of selective SERS probes for superoxide (O), hydroxyl radicals (OH), nitric oxide (NO), peroxynitrite (ONOO), and hypochlorite (OCl) are presented. Finally, technical challenges and future research directions are discussed to guide the design of SERS for ROS analysis.
活性氧(ROS)在自然界和工业中的各种生物和化学过程中发挥着重要作用,包括细胞信号传导、疾病发展与衰老、免疫防御、环境修复、药物合成、金属腐蚀、能源生产等。因此,对它们的检测至关重要,但由于其寿命短且稳态浓度低的瞬态性质,其准确识别和定量在技术上具有挑战性。作为一种高灵敏度和选择性的分析技术,表面增强拉曼光谱(SERS)有望实时检测ROS,能够以出色的分辨率原位监测涉及ROS的电化学和生化事件。本综述对基于SERS的ROS检测的最新进展进行了全面分析。在此,对SERS的原理和ROS传感机制进行了严格评估,突出了它们在电化学和生物系统中直接和间接ROS监测中的新兴应用。介绍了用于超氧阴离子(O)、羟基自由基(OH)、一氧化氮(NO)、过氧亚硝酸根(ONOO)和次氯酸根(OCl)的选择性SERS探针的发展和反应方案。最后,讨论了技术挑战和未来研究方向,以指导用于ROS分析的SERS设计。