可吸入式芯片上黏液纤毛系统揭示纳米药物递送中的肺部清除动力学
Inhalable Mucociliary-On-Chip System Revealing Pulmonary Clearance Dynamics in Nanodrug Delivery.
作者信息
Lin Ko-Chih, Lin Hsuan-Yu, Yang Chuan-Yi, Chu Ying-Ling, Xie Ren-Hao, Wang Cheng-Ming, Tseng Yun-Long, Chen He Ru, Chung Johnson H Y, Yang Jia-Wei, Chen Guan-Yu
机构信息
Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
出版信息
ACS Nano. 2025 Jan 21;19(2):2228-2244. doi: 10.1021/acsnano.4c11693. Epub 2025 Jan 7.
The development of a inhaled nanodrug delivery assessment platform is crucial for advancing treatments for chronic lung diseases. Traditional in vitro models and commercial aerosol systems fail to accurately simulate the complex human respiratory patterns and mucosal barriers. To address this, we have developed the breathing mucociliary-on-a-chip (BMC) platform, which replicates mucociliary clearance and respiratory dynamics in vitro. This platform allows for precise analysis of drug deposition and penetration, providing critical insights into how liposomes and other nanocarriers interact with lung tissues under various airflow conditions. Our results reveal that liposomes penetrate deeper into the cellular layer under high shear stress, with both static and dynamic airflows distinctly affecting their drug release rates. The BMC platform integrates dynamic inhalation systems with mucociliary clearance functionality, enabling a comprehensive evaluation of drug delivery efficacy. This approach highlights the importance of airflow dynamics in optimizing inhalable nanodrug delivery systems, improving nanocarrier design, and tailoring drug dosages and release strategies. The BMC platform represents a significant advancement in the field of inhaled nanodrug delivery, offering a more accurate and reliable method for assessing the performance of therapies. By providing a detailed understanding of drug interactions with lung tissues, this platform supports the development of personalized inhaled therapies and offers promising strategies for treating pulmonary diseases and advancing nanodrug development.
开发一种吸入式纳米药物递送评估平台对于推进慢性肺病的治疗至关重要。传统的体外模型和商业气溶胶系统无法准确模拟复杂的人类呼吸模式和粘膜屏障。为了解决这个问题,我们开发了呼吸纤毛芯片(BMC)平台,该平台在体外复制了纤毛清除和呼吸动力学。该平台允许对药物沉积和渗透进行精确分析,为脂质体和其他纳米载体在各种气流条件下与肺组织的相互作用提供关键见解。我们的结果表明,在高剪切应力下脂质体更深地渗透到细胞层中,静态和动态气流都明显影响其药物释放速率。BMC平台将动态吸入系统与纤毛清除功能集成在一起,能够全面评估药物递送效果。这种方法突出了气流动力学在优化可吸入纳米药物递送系统、改进纳米载体设计以及定制药物剂量和释放策略方面的重要性。BMC平台代表了吸入式纳米药物递送领域的重大进展,为评估治疗性能提供了一种更准确可靠的方法。通过提供对药物与肺组织相互作用的详细理解,该平台支持个性化吸入疗法的开发,并为治疗肺部疾病和推进纳米药物开发提供了有前景的策略。
相似文献
J Aerosol Med Pulm Drug Deliv. 2024-10
ACS Biomater Sci Eng. 2025-1-13
Drug Discov Today. 2024-7
J Aerosol Med Pulm Drug Deliv. 2017-7-14
J Aerosol Med Pulm Drug Deliv. 2022-10
Zhonghua Jie He He Hu Xi Za Zhi. 2024-2-12
引用本文的文献
本文引用的文献
Adv Nanobiomed Res. 2023-3
Front Pharmacol. 2023-3-6
Biochim Biophys Acta Gen Subj. 2022-10
Drug Discov Today. 2022-9
Pharmaceutics. 2022-1-27