Kovatchev Boris P, Lobo Benjamin, Fabris Chiara, Ganji Mohammadreza, El Fathi Anas, Breton Marc D, Kanapka Lauren, Kollman Craig, Battelino Tadej, Beck Roy W
Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA.
School of Data Science, University of Virginia, Charlottesville, VA, USA.
Diabetes Technol Ther. 2025 Mar;27(3):209-216. doi: 10.1089/dia.2024.0404. Epub 2025 Jan 8.
Using a multistep machine-learning procedure, add virtual continuous glucose monitoring (CGM) traces to the original sparse data of the landmark Diabetes Control and Complications Trial (DCCT). Assess the association of CGM metrics with the microvascular complications of type 1 diabetes observed during the DCCT and establish time-in-range (TIR) as a viable marker of glycemic control. Utilizing the DCCT glycated hemoglobin data obtained every 1 or 3 months plus quarterly 7-point blood glucose (BG) profiles in a multistep procedure: (i) utilized archival BG traces to model interday BG variability and estimate glycated hemoglobin; (ii) trained across the DCCT BG profiles and associated each profile with an archival BG trace; and (iii) used previously identified CGM "motifs" to associate a CGM trace to a BG trace, for each DCCT participant. TIR (70-180 mg/dL) computed from virtual CGM data over 14 days prior to each glycated hemoglobin measurement reproduced the observed glycemic control differences between the intensive and conventional DCCT groups, with TIR generally >60% and <40% in these groups, respectively. Similar to glycated hemoglobin, TIR was associated with the risk of development or progression of retinopathy, nephropathy, and neuropathy (all -values <0.0001). Poisson regressions indicated that TIR predicted retinopathy and microalbuminuria similarly to the original glycated hemoglobin data. The landmark DCCT was revisited using contemporary data science methods, which allowed adding individual CGM traces to the original data. Fourteen-day CGM metrics predicted microvascular diabetes complications similarly to glycated hemoglobin. Not a clinical trial.
使用多步骤机器学习程序,将虚拟连续血糖监测(CGM)轨迹添加到具有里程碑意义的糖尿病控制与并发症试验(DCCT)的原始稀疏数据中。评估CGM指标与DCCT期间观察到的1型糖尿病微血管并发症之间的关联,并将血糖达标时间(TIR)确立为血糖控制的可行指标。在一个多步骤程序中利用每1或3个月获得的DCCT糖化血红蛋白数据以及每季度的7点血糖(BG)谱:(i)利用存档的BG轨迹对日间BG变异性进行建模并估算糖化血红蛋白;(ii)在DCCT BG谱上进行训练,并将每个谱与存档的BG轨迹相关联;(iii)针对每个DCCT参与者,使用先前确定的CGM“基序”将CGM轨迹与BG轨迹相关联。在每次糖化血红蛋白测量前14天从虚拟CGM数据计算出的TIR(70 - 180 mg/dL)重现了强化治疗组和常规治疗组之间观察到的血糖控制差异,这些组中的TIR通常分别>60%和<40%。与糖化血红蛋白相似,TIR与视网膜病变、肾病和神经病变的发生或进展风险相关(所有P值<0.0001)。泊松回归表明,TIR预测视网膜病变和微量白蛋白尿的情况与原始糖化血红蛋白数据相似。使用当代数据科学方法重新审视了具有里程碑意义的DCCT,这使得能够将个体CGM轨迹添加到原始数据中。14天的CGM指标预测微血管糖尿病并发症的情况与糖化血红蛋白相似。非临床试验。