Suppr超能文献

一种基于血浆蛋白质组学的机器学习模型用于识别产后抑郁风险

A Plasma Proteomics-Based Model for Identifying the Risk of Postpartum Depression Using Machine Learning.

作者信息

Wang Shusheng, Xu Ru, Li Gang, Liu Songping, Zhu Jie, Gao Pengfei

机构信息

Department of Traditional Chinese Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China.

Department of Laboratory Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China.

出版信息

J Proteome Res. 2025 Feb 7;24(2):824-833. doi: 10.1021/acs.jproteome.4c00826. Epub 2025 Jan 7.

Abstract

Postpartum depression (PPD) poses significant risks to maternal and infant health, yet proteomic analyses of PPD-risk women remain limited. This study analyzed plasma samples from 30 healthy postpartum women and 30 PPD-risk women using mass spectrometry, identifying 98 differentially expressed proteins (29 upregulated and 69 downregulated). Principal component analysis revealed distinct protein expression profiles between the groups. Functional enrichment and PPI analyses further explored the biological functions of these proteins. Machine learning models (XGBoost and LASSO regression) identified 17 key proteins, with the optimal logistic regression model comprising P13797 (PLS3), P56750 (CLDN17), O43173 (ST8SIA3), P01593 (IGKV1D-33), and P43243 (MATR3). The model demonstrated excellent predictive performance through ROC curves, calibration, and decision curves. These findings suggest potential biomarkers for early PPD risk assessment, paving the way for personalized prediction. However, limitations include the lack of diagnostic interviews, such as the Structured Clinical Interview for DSM-V (SCID), to confirm PPD diagnosis, a small sample size, and limited ethnic diversity, affecting generalizability. Future studies should expand sample diversity, confirm diagnoses with SCID, and validate biomarkers in larger cohorts to ensure their clinical applicability.

摘要

产后抑郁症(PPD)对母婴健康构成重大风险,但对有PPD风险女性的蛋白质组学分析仍然有限。本研究使用质谱分析法分析了30名健康产后女性和30名有PPD风险女性的血浆样本,鉴定出98种差异表达蛋白(29种上调和69种下调)。主成分分析揭示了两组之间不同的蛋白表达谱。功能富集分析和蛋白质-蛋白质相互作用(PPI)分析进一步探究了这些蛋白质的生物学功能。机器学习模型(XGBoost和套索回归)确定了17种关键蛋白,最佳逻辑回归模型包括P13797(PLS3)、P56750(CLDN17)、O43173(ST8SIA3)、P01593(IGKV1D-33)和P43243(MATR3)。该模型通过受试者工作特征(ROC)曲线、校准和决策曲线展示了出色的预测性能。这些发现提示了用于早期PPD风险评估的潜在生物标志物,为个性化预测铺平了道路。然而,局限性包括缺乏诊断访谈(如用于《精神疾病诊断与统计手册》第五版(DSM-V)的结构化临床访谈(SCID))来确认PPD诊断、样本量小以及种族多样性有限,影响了结果的普遍性。未来的研究应扩大样本多样性,使用SCID确认诊断,并在更大的队列中验证生物标志物,以确保其临床适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b09/11812005/40926d9e8cea/pr4c00826_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验