Negretti Nicholas M, Son Yeongseo, Crooke Philip, Plosa Erin J, Benjamin John T, Jetter Christopher S, Bunn Claire, Mignemi Nicholas, Marini John, Hackett Alice N, Ransom Meaghan, Garg Shriya, Nichols David, Guttentag Susan H, Pua Heather H, Blackwell Timothy S, Zacharias William, Frank David B, Kozub John A, Mahadevan-Jansen Anita, Krystofiak Evan, Kropski Jonathan A, Wright Christopher Ve, Millis Bryan, Sucre Jennifer Ms
Department of Pediatrics.
Department of Mathematics, and.
JCI Insight. 2025 Jan 7;10(4):e187876. doi: 10.1172/jci.insight.187876.
Determining how alveoli are formed and maintained is critical to understanding lung organogenesis and regeneration after injury. To study the cellular dynamics of this critical stage of lung development, we have used scanned oblique-plane illumination microscopy of living lung slices to observe alveologenesis in real time at high resolution over several days. Contrary to the prevailing notion that alveologenesis occurs by airspace subdivision via ingrowing septa, we found that alveoli form by ballooning epithelial outgrowth supported by contracting mesenchymal ring structures. Systematic analysis has produced a computational model of finely timed cellular structural changes that drive normal alveologenesis. With this model, we can now quantify how perturbing known regulatory intercellular signaling pathways and cell migration processes affects alveologenesis. In the future, this paradigm and platform can be leveraged for mechanistic studies and screening for therapies to promote lung regeneration.
确定肺泡如何形成和维持对于理解肺器官发生以及损伤后的再生至关重要。为了研究肺发育这一关键阶段的细胞动力学,我们使用了活体肺切片的扫描斜平面照明显微镜,在数天内以高分辨率实时观察肺泡形成。与普遍认为的肺泡形成是通过向内生长的隔膜进行气腔细分的观点相反,我们发现肺泡是由收缩的间充质环结构支持的上皮细胞向外膨出形成的。系统分析产生了一个精确计时的细胞结构变化计算模型,该模型驱动正常的肺泡形成。借助这个模型,我们现在可以量化干扰已知的调节细胞间信号通路和细胞迁移过程如何影响肺泡形成。未来,这种模式和平台可用于机制研究以及筛选促进肺再生的疗法。