巴拉特模拟:一个针对印度的基于智能体的建模框架。
BharatSim: An agent-based modelling framework for India.
作者信息
Cherian Philip, Kshirsagar Jayanta, Neekhra Bhavesh, Deshkar Gaurav, Hayatnagarkar Harshal, Kapoor Kshitij, Kaski Chandrakant, Kathar Ganesh, Khandekar Swapnil, Mookherjee Saurabh, Ninawe Praveen, Noronha Riz Fernando, Ranka Pranjal, Sinha Vaibhhav, Vinod Tina, Yadav Chhaya, Gupta Debayan, Menon Gautam I
机构信息
Department of Physics, Ashoka University, Sonepat, Haryana, India.
Engineering for Research (e4r), Thoughtworks Technologies, Pune, Maharashtra, India.
出版信息
PLoS Comput Biol. 2024 Dec 30;20(12):e1012682. doi: 10.1371/journal.pcbi.1012682. eCollection 2024 Dec.
BharatSim is an open-source agent-based modelling framework for the Indian population. It can simulate populations at multiple scales, from small communities to states. BharatSim uses a synthetic population created by applying statistical methods and machine learning algorithms to survey data from multiple sources, including the Census of India, the India Human Development Survey, the National Sample Survey, and the Gridded Population of the World. This synthetic population defines individual agents with multiple attributes, among them age, gender, home and work locations, pre-existing health conditions, and socio-economic and employment status. BharatSim's domain-specific language provides a framework for the simulation of diverse models. Its computational core, coded in Scala, supports simulations of a large number of individual agents, up to 50 million. Here, we describe the design and implementation of BharatSim, using it to address three questions motivated by the COVID-19 pandemic in India: (i) When can schools be safely reopened given specified levels of hybrid immunity?, (ii) How do new variants alter disease dynamics in the background of prior infections and vaccinations? and (iii) How can the effects of varied non-pharmaceutical interventions (NPIs) be quantified for a model Indian city? Through its India-specific synthetic population, BharatSim allows disease modellers to address questions unique to this country. It should also find use in the computational social sciences, potentially providing new insights into emergent patterns in social behaviour.
BharatSim是一个针对印度人口的基于智能体的开源建模框架。它可以模拟从小型社区到邦等多个尺度的人口情况。BharatSim使用通过对包括印度人口普查、印度人类发展调查、全国抽样调查和世界网格人口数据在内的多个来源的调查数据应用统计方法和机器学习算法而创建的合成人口。这个合成人口定义了具有多种属性的个体智能体,其中包括年龄、性别、家庭和工作地点、既往健康状况以及社会经济和就业状况。BharatSim的领域特定语言为模拟各种模型提供了一个框架。其用Scala编写的计算核心支持对多达5000万个个体智能体进行模拟。在这里,我们描述了BharatSim的设计与实现,并使用它来解决由印度新冠疫情引发的三个问题:(i)在给定特定水平的混合免疫力的情况下,学校何时可以安全重新开放?(ii)新变种如何在先期感染和接种疫苗的背景下改变疾病动态?以及(iii)如何为一个典型的印度城市量化各种非药物干预措施(NPIs)的效果?通过其针对印度的合成人口,BharatSim使疾病建模者能够解决该国特有的问题。它也应该会在计算社会科学中得到应用,有可能为社会行为中的新出现模式提供新的见解。