Khan Mukhtiar, Khan Nadeem, Ullah Ibad, Shah Kamal, Abdeljawad Thabet, Abdalla Bahaaeldin
College of Electrical Engineering and Computer Science, National Taiwan University, Taipei City, 10617, Taiwan.
Research Center for Information Technology Innovation, Academia Sinica, Taipei, 115201, Taiwan.
Sci Rep. 2025 Mar 18;15(1):9291. doi: 10.1038/s41598-025-93436-0.
Understanding the complex dynamics of HIV/AIDS transmission requires models that capture real-world progression and intervention impacts. This study introduces an innovative mathematical framework using fractal-fractional calculus to analyze HIV/AIDS dynamics, emphasizing memory effects and nonlocal interactions critical to disease spread. By dividing populations into four distinct compartments-susceptible individuals, infected individuals, those undergoing treatment, and individuals in advanced AIDS stages-the model reflects key phases of infection and therapeutic interventions. Unlike conventional approaches, the proposed nonlinear transmission function, [Formula: see text], accounts for varying infectivity levels across stages (where [Formula: see text] is the total population and ∇ denotes the effective contact rate), offering a nuanced view of how treatment efficacy ([Formula: see text]) and progression to AIDS ([Formula: see text]) shape transmission. The analytical framework combines rigorous mathematical exploration with practical insights. We derive the basic reproduction number [Formula: see text] to assess outbreak potential and employ Lyapunov theory to establish global stability conditions. Using the Schauder fixed-point theorem, we prove the existence and uniqueness of solutions, while bifurcation analysis via center manifold theory reveals critical thresholds for disease persistence or elimination. We use a computational scheme that combines the Adams-Bashforth method with an interpolation-based correction technique to ensure numerical precision and confirm theoretical results. Sensitivity analysis highlights medication accessibility and delaying the spread of AIDS as a vital control strategy by identifying ([Formula: see text]) and ([Formula: see text]) as critical parameters. The numerical simulations illustrate the predictive ability of the model, which shows how fractal-fractional order affects outbreak trajectories and long-term disease burden. The framework outperforms conventional integer order models and produces more accurate epidemiological predictions by integrating memory-dependent transmission with fractional order flexibility. These findings demonstrate the model's value in developing targeted public health initiatives, particularly in environments with limited resources where disease monitoring and balancing treatment allocation is essential. In the end, our work provides a tool to better predict and manage the evolving challenges of HIV/AIDS by bridging the gap between theoretical mathematics and actual disease control.
理解艾滋病毒/艾滋病传播的复杂动态需要能够捕捉现实世界进展和干预影响的模型。本研究引入了一种创新的数学框架,使用分形 - 分数微积分来分析艾滋病毒/艾滋病动态,强调对疾病传播至关重要的记忆效应和非局部相互作用。通过将人群分为四个不同的类别——易感个体、感染个体、接受治疗的个体和处于艾滋病晚期的个体——该模型反映了感染和治疗干预的关键阶段。与传统方法不同,所提出的非线性传播函数[公式:见原文]考虑了不同阶段的不同感染水平(其中[公式:见原文]是总人口,∇表示有效接触率),提供了关于治疗效果([公式:见原文])和艾滋病进展([公式:见原文])如何影响传播的细致观点。该分析框架将严谨的数学探索与实际见解相结合。我们推导基本再生数[公式:见原文]以评估爆发潜力,并运用李雅普诺夫理论建立全局稳定性条件。使用绍德尔不动点定理,我们证明了解的存在性和唯一性,而通过中心流形理论进行的分岔分析揭示了疾病持续或消除的临界阈值。我们使用一种将亚当斯 - 巴什福斯方法与基于插值的校正技术相结合的计算方案来确保数值精度并确认理论结果。敏感性分析通过将([公式:见原文])和([公式:见原文])确定为关键参数,突出了药物可及性和延缓艾滋病传播作为重要控制策略。数值模拟说明了该模型的预测能力,展示了分形 - 分数阶如何影响爆发轨迹和长期疾病负担。该框架优于传统的整数阶模型,并通过将依赖记忆的传播与分数阶灵活性相结合产生更准确的流行病学预测。这些发现证明了该模型在制定有针对性的公共卫生举措方面的价值,特别是在资源有限的环境中,疾病监测和平衡治疗分配至关重要。最后,我们的工作提供了一个工具,通过弥合理论数学与实际疾病控制之间的差距,更好地预测和管理艾滋病毒/艾滋病不断演变的挑战。