Kim Jungye, Lee Jimin, Kim Bitbyeol, Kim Sangwook, Jin Hyeongmin, Jung Seongmoon
Department of Biomedical Engineering, Korea University, Seoul, Republic of Korea.
Department of Nuclear Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
PLoS One. 2024 Dec 30;19(12):e0316099. doi: 10.1371/journal.pone.0316099. eCollection 2024.
This paper presents a novel approach for generating virtual non-contrast planning computed tomography (VNC-pCT) images from contrast-enhanced planning CT (CE-pCT) scans using a deep learning model. Unlike previous studies, which often lacked sufficient data pairs of contrast-enhanced and non-contrast CT images, we trained our model on dual-energy CT (DECT) images, using virtual non-contrast CT (VNC CT) images as outputs instead of true non-contrast CT images. We used a deterministic method to convert CE-pCT images into pseudo DECT images for model application. Model training and evaluation were conducted on 45 patients. The performance of our model, 'VNC-Net', was evaluated using various metrics, demonstrating high scores for quantitative performance. Moreover, our model accurately replicated target VNC CT images, showing close correspondence in CT numbers. The versatility of our model was further demonstrated by applying it to pseudo VNC DECT generation, followed by conversion to VNC-pCT. CE-pCT images of ten liver cancer patients and ten left-sided breast cancer patients were used. A quantitative comparison with true non-contrast planning CT (TNC-pCT) images validated the accuracy of the generated VNC-pCT images. Furthermore, dose calculations on CE-pCT and VNC-pCT images from patients undergoing volumetric modulated arc therapy for liver and breast cancer treatment showed the clinical relevance of our approach. Despite the model's overall good performance, limitations remained, particularly in maintaining CT numbers of bone and soft tissue less influenced by contrast agent. Future research should address these challenges to further improve the model's accuracy and applicability in radiotherapy planning. Overall, our study highlights the potential of deep learning models to improve imaging protocols and accuracy in radiotherapy planning.
本文提出了一种使用深度学习模型从增强扫描的计划计算机断层扫描(CE-pCT)生成虚拟平扫计划计算机断层扫描(VNC-pCT)图像的新方法。与以往常常缺乏足够的增强CT和平扫CT图像数据对的研究不同,我们使用虚拟平扫CT(VNC CT)图像作为输出而非真实的平扫CT图像,在双能CT(DECT)图像上训练我们的模型。我们使用一种确定性方法将CE-pCT图像转换为伪DECT图像以供模型应用。对45例患者进行了模型训练和评估。使用各种指标评估了我们的模型“VNC-Net”的性能,结果显示其在定量性能方面得分很高。此外,我们的模型准确地复制了目标VNC CT图像,在CT值上显示出密切的对应关系。通过将其应用于伪VNC DECT生成,然后转换为VNC-pCT,进一步证明了我们模型的通用性。使用了10例肝癌患者和10例左侧乳腺癌患者的CE-pCT图像。与真实平扫计划CT(TNC-pCT)图像进行的定量比较验证了生成的VNC-pCT图像的准确性。此外,对接受容积调强弧形放疗治疗肝癌和乳腺癌的患者的CE-pCT和VNC-pCT图像进行剂量计算,显示了我们方法的临床相关性。尽管该模型总体表现良好,但仍存在局限性,特别是在保持骨和软组织的CT值受造影剂影响较小方面。未来的研究应解决这些挑战,以进一步提高模型在放射治疗计划中的准确性和适用性。总体而言,我们的研究突出了深度学习模型在改善放射治疗计划中的成像方案和准确性方面的潜力。