Suppr超能文献

利用因果推断方法来估计观察性健康数据中的效应并制定干预策略。

Utilising causal inference methods to estimate effects and strategise interventions in observational health data.

作者信息

Duong Bao, Senadeera Manisha, Nguyen Toan, Nichols Melanie, Backholer Kathryn, Allender Steven, Nguyen Thin

机构信息

Applied Artificial Intelligence Institute (A2I2), Deakin University, Geelong, Australia.

Global Centre for Preventive Health and Nutrition (GLOBE), Faculty of Health, Deakin University, Geelong, Australia.

出版信息

PLoS One. 2024 Dec 30;19(12):e0314761. doi: 10.1371/journal.pone.0314761. eCollection 2024.

Abstract

Randomised controlled trials (RCTs) are the gold standard for evaluating health interventions but often face ethical and practical challenges. When RCTs are not feasible, large observational data sets emerge as a pivotal resource, though these data sets may be subject to bias and unmeasured confounding. Traditional statistical (or non-causal) learning methods, while useful, face limitations in fully uncovering causal effects, i.e., determining if an intervention truly has a direct impact on the outcome. This gap is bridged by the latest advancements in causal inference methods, building upon machine learning-based approaches to investigate not only population-level effects but also the heterogeneous effects of interventions across population subgroups. We demonstrate a causality approach that utilises causal trees and forests, enhanced by weighting mechanisms to adjust for confounding covariates. This method does more than just predict the overall effect of an intervention on the whole population; it also gives a clear picture of how it works differently in various subgroups. Finally, this method excels in strategising and optimising interventions, by suggesting precise and explainable approaches to targeting the intervention, to maximise overall population health outcomes. These capabilities are crucial for health researchers, offering new insights into existing data and assisting in the decision-making process for future interventions. Using observational data from the 2017-18 Australian National Health Survey, our study demonstrates the power of causal trees in estimating the impact of exercise on BMI levels, understanding how this impact varies across subgroups, and assessing the effectiveness of various intervention targeting strategies for enhanced health benefits.

摘要

随机对照试验(RCTs)是评估健康干预措施的金标准,但常常面临伦理和实际挑战。当随机对照试验不可行时,大型观察数据集就成为关键资源,尽管这些数据集可能存在偏差和未测量的混杂因素。传统的统计(或非因果)学习方法虽然有用,但在全面揭示因果效应方面存在局限性,即确定一项干预措施是否真的对结果有直接影响。因果推断方法的最新进展弥补了这一差距,它基于机器学习方法,不仅可以研究总体水平的效应,还能研究干预措施在不同人群亚组中的异质性效应。我们展示了一种因果关系方法,该方法利用因果树和因果森林,并通过加权机制进行增强,以调整混杂协变量。这种方法不仅能预测一项干预措施对整个人口的总体效果,还能清晰地呈现其在不同亚组中的作用方式。最后,该方法在制定和优化干预措施方面表现出色,通过提出精确且可解释的干预目标方法,以最大化总体人群的健康结果。这些能力对健康研究人员至关重要,为现有数据提供了新的见解,并有助于未来干预措施的决策过程。利用2017 - 18年澳大利亚国民健康调查的观察数据,我们的研究展示了因果树在估计运动对体重指数水平的影响、理解这种影响在不同亚组中的差异以及评估各种旨在增强健康益处的干预目标策略的有效性方面的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13a1/11684594/e5a9af2b5e60/pone.0314761.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验