Suppr超能文献

革新糖尿病视网膜病变筛查:将基于人工智能的视网膜成像整合到初级保健中。

Revolutionizing Diabetic Retinopathy Screening: Integrating AI-Based Retinal Imaging in Primary Care.

作者信息

Kummerle Dale, Beals Dean, Simon Lesley, Rogers Faith, Pogroszewski Stan

机构信息

KH Consultancy, West Windsor, NJ, USA.

DKBmed, New York, NY, USA.

出版信息

J CME. 2025 Jan 2;14(1):2437294. doi: 10.1080/28338073.2024.2437294. eCollection 2025.

Abstract

Diabetic retinopathy (DR) is a public health issue affecting millions in the United States and Europe. However, despite strong recommendations for screening at regular intervals by many professional societies, including the American Diabetes Association and the American Academy of Ophthalmology, screening rates remain suboptimal, with only 50-70% of patients with diabetes adhering to recommended annual eye exams. Barriers to screening include lack of awareness, socioeconomic factors, health care system fragmentation, and workforce shortages, among others. Artificial intelligence (AI)-based retinal screening tools offer promising solutions to improve DR detection in primary care settings. We describe a quality improvement and continuing medical education programme, starting in 2020, which has so far deployed 198 AI-equipped cameras in 5 health systems, covering approximately 151,000 patients with diabetes. To date, over 20,000 screenings were completed, with more than mild DR detected in more than 3,450 people, leading to specialist referrals for follow-up care. Notably, negative screenings potentially represent deferred specialist care. While AI adoption in healthcare presents challenges, its potential benefits in improving patient care and optimising resources are significant. Integrating AI-based DR screening with a comprehensive education and process improvement initiative in primary care practices warrants serious consideration, promising to enhance patient outcomes.

摘要

糖尿病视网膜病变(DR)是一个影响美国和欧洲数百万人的公共卫生问题。然而,尽管包括美国糖尿病协会和美国眼科学会在内的许多专业协会强烈建议定期进行筛查,但筛查率仍然不尽人意,只有50%至70%的糖尿病患者遵守推荐的年度眼部检查。筛查的障碍包括缺乏认识、社会经济因素、医疗保健系统碎片化以及劳动力短缺等。基于人工智能(AI)的视网膜筛查工具为改善初级保健环境中的DR检测提供了有前景的解决方案。我们描述了一个始于2020年的质量改进和继续医学教育项目,该项目迄今已在5个卫生系统中部署了198台配备AI的摄像头,覆盖了约15.1万名糖尿病患者。迄今为止,已完成了超过20000次筛查,在超过3450人中检测出了不止轻度的DR,从而导致患者被转介给专科医生进行后续治疗。值得注意的是,阴性筛查结果可能意味着推迟专科护理。虽然在医疗保健中采用AI存在挑战,但其在改善患者护理和优化资源方面的潜在益处是巨大的。将基于AI的DR筛查与初级保健实践中的全面教育和流程改进计划相结合值得认真考虑,有望改善患者的治疗结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ad/11703125/e81946b04052/ZJEC_A_2437294_F0001_OC.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验