Fuster-Barceló Caterina, García-López-de-Haro Carlos, Gómez-de-Mariscal Estibaliz, Ouyang Wei, Olivo-Marin Jean-Christophe, Sage Daniel, Muñoz-Barrutia Arrate
Bioengineering Department[CMT1], Universidad Carlos III de Madrid, Leganes, Spain.
Bioengineering Division, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
Biol Imaging. 2024 Nov 22;4:e14. doi: 10.1017/S2633903X24000114. eCollection 2024.
This manuscript showcases the latest advancements in deepImageJ, a pivotal Fiji/ImageJ plugin for bioimage analysis in life sciences. The plugin, known for its user-friendly interface, facilitates the application of diverse pre-trained convolutional neural networks to custom data. The manuscript demonstrates several deepImageJ capabilities, particularly in deploying complex pipelines, three-dimensional (3D) image analysis, and processing large images. A key development is the integration of the Java Deep Learning Library, expanding deepImageJ's compatibility with various deep learning (DL) frameworks, including TensorFlow, PyTorch, and ONNX. This allows for running multiple engines within a single Fiji/ImageJ instance, streamlining complex bioimage analysis workflows. The manuscript details three case studies to demonstrate these capabilities. The first case study explores integrated image-to-image translation followed by nuclei segmentation. The second case study focuses on 3D nuclei segmentation. The third case study showcases large image volume segmentation and compatibility with the BioImage Model Zoo. These use cases underscore deepImageJ's versatility and power to make advanced DLmore accessible and efficient for bioimage analysis. The new developments within deepImageJ seek to provide a more flexible and enriched user-friendly framework to enable next-generation image processing in life science.
本文展示了deepImageJ的最新进展,它是Fiji/ImageJ中用于生命科学领域生物图像分析的关键插件。该插件以其用户友好的界面而闻名,便于将各种预训练的卷积神经网络应用于自定义数据。本文展示了deepImageJ的多种功能,特别是在部署复杂流程、三维(3D)图像分析和处理大图像方面。一个关键的进展是集成了Java深度学习库,扩展了deepImageJ与各种深度学习(DL)框架(包括TensorFlow、PyTorch和ONNX)的兼容性。这使得能够在单个Fiji/ImageJ实例中运行多个引擎,简化了复杂的生物图像分析工作流程。本文详细介绍了三个案例研究来展示这些功能。第一个案例研究探讨了图像到图像的集成转换,随后进行细胞核分割。第二个案例研究专注于3D细胞核分割。第三个案例研究展示了大图像体积分割以及与生物图像模型库的兼容性。这些用例强调了deepImageJ的多功能性和强大功能,使先进的深度学习在生物图像分析中更易于使用且高效。deepImageJ的新进展旨在提供一个更灵活、更丰富的用户友好框架,以实现生命科学领域的下一代图像处理。