文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米羟基磷灰石的进展:合成、生物医学应用及复合材料的发展

Advancements in nanohydroxyapatite: synthesis, biomedical applications and composite developments.

作者信息

Zhao Rui, Meng Xiang, Pan Zixian, Li Yongjia, Qian Hui, Zhu Xiangdong, Yang Xiao, Zhang Xingdong

机构信息

School of Medicine, Department of Inspection, Jiangsu University, Zhenjiang 212013, China.

National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.

出版信息

Regen Biomater. 2024 Nov 5;12:rbae129. doi: 10.1093/rb/rbae129. eCollection 2025.


DOI:10.1093/rb/rbae129
PMID:39776858
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11703556/
Abstract

Nanohydroxyapatite (nHA) is distinguished by its exceptional biocompatibility, bioactivity and biodegradability, qualities attributed to its similarity to the mineral component of human bone. This review discusses the synthesis techniques of nHA, highlighting how these methods shape its physicochemical attributes and, in turn, its utility in biomedical applications. The versatility of nHA is further enhanced by doping with biologically significant ions like magnesium or zinc, which can improve its bioactivity and confer therapeutic properties. Notably, nHA-based composites, incorporating metal, polymeric and bioceramic scaffolds, exhibit enhanced osteoconductivity and osteoinductivity. In orthopedic field, nHA and its composites serve effectively as bone graft substitutes, showing exceptional osteointegration and vascularization capabilities. In dentistry, these materials contribute to enamel remineralization, mitigate tooth sensitivity and are employed in surface modification of dental implants. For cancer therapy, nHA composites offer a promising strategy to inhibit tumor growth while sparing healthy tissues. Furthermore, nHA-based composites are emerging as sophisticated platforms with high surface ratio for the delivery of drugs and bioactive substances, gradually releasing therapeutic agents for progressive treatment benefits. Overall, this review delineates the synthesis, modifications and applications of nHA in various biomedical fields, shed light on the future advancements in biomaterials research.

摘要

纳米羟基磷灰石(nHA)以其卓越的生物相容性、生物活性和生物降解性而著称,这些特性归因于它与人体骨骼矿物质成分的相似性。本综述讨论了nHA的合成技术,重点介绍了这些方法如何塑造其物理化学属性,进而影响其在生物医学应用中的效用。通过掺杂镁或锌等具有生物学意义的离子,nHA的多功能性进一步增强,这可以提高其生物活性并赋予其治疗特性。值得注意的是,基于nHA的复合材料,包括金属、聚合物和生物陶瓷支架,表现出增强的骨传导性和骨诱导性。在骨科领域,nHA及其复合材料有效地用作骨移植替代物,表现出卓越的骨整合和血管化能力。在牙科领域,这些材料有助于牙釉质再矿化,减轻牙齿敏感性,并用于牙科植入物的表面改性。对于癌症治疗,nHA复合材料提供了一种有前景的策略,可在保护健康组织的同时抑制肿瘤生长。此外,基于nHA的复合材料正在成为具有高表面积比的复杂平台,用于药物和生物活性物质的递送,逐渐释放治疗剂以获得渐进性的治疗益处。总体而言,本综述阐述了nHA在各种生物医学领域的合成、改性和应用,为生物材料研究的未来进展提供了启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82db/11703556/7b961397add8/rbae129f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82db/11703556/c19a54ed1fab/rbae129f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82db/11703556/559a858aee5b/rbae129f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82db/11703556/c875112ba161/rbae129f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82db/11703556/92e3910e7ba2/rbae129f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82db/11703556/aaa0cff61466/rbae129f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82db/11703556/76ca5a7a000f/rbae129f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82db/11703556/3d127de5dc77/rbae129f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82db/11703556/7b961397add8/rbae129f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82db/11703556/c19a54ed1fab/rbae129f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82db/11703556/559a858aee5b/rbae129f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82db/11703556/c875112ba161/rbae129f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82db/11703556/92e3910e7ba2/rbae129f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82db/11703556/aaa0cff61466/rbae129f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82db/11703556/76ca5a7a000f/rbae129f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82db/11703556/3d127de5dc77/rbae129f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82db/11703556/7b961397add8/rbae129f7.jpg

相似文献

[1]
Advancements in nanohydroxyapatite: synthesis, biomedical applications and composite developments.

Regen Biomater. 2024-11-5

[2]
Nanohydroxyapatite in dentistry: A comprehensive review.

Saudi Dent J. 2023-9

[3]
Hydroxyapatite: A journey from biomaterials to advanced functional materials.

Adv Colloid Interface Sci. 2023-11

[4]
Fabrication and characterization of 3D-printed polymeric-based scaffold coated with bioceramic and naringin for a potential use in dental pulp regeneration (in vitro study).

Int Endod J. 2025-4

[5]
Content-Dependent Osteogenic Response of Nanohydroxyapatite: An in Vitro and in Vivo Assessment within Collagen-Based Scaffolds.

ACS Appl Mater Interfaces. 2016-8-30

[6]
Human Periodontal Ligament Stem Cells Transplanted with Nanohydroxyapatite/Chitosan/Gelatin 3D Porous Scaffolds Promote Jaw Bone Regeneration in Swine.

Stem Cells Dev. 2021-5-15

[7]
Design and Biophysical Characterization of Poly (l-Lactic) Acid Microcarriers with and without Modification of Chitosan and Nanohydroxyapatite.

Polymers (Basel). 2018-9-25

[8]
Fabrication of Grown Hydroxyapatite Nanoparticles Modified Porous Polyetheretherketone Matrix Composites to Promote Osteointegration and Enhance Bone Repair.

Front Bioeng Biotechnol. 2022-2-28

[9]
Incorporation of strontium-containing bioactive particles into PEOT/PBT electrospun scaffolds for bone tissue regeneration.

Biomater Adv. 2023-6

[10]
Evaluation of Physicochemical Properties of a Hydroxyapatite Polymer Nanocomposite for Use in Fused Filament Fabrication.

Polymers (Basel). 2023-10-3

引用本文的文献

[1]
Nanotechnology in Orthopedic Care: Advances in Drug Delivery, Implants, and Biocompatibility Considerations.

Int J Nanomedicine. 2025-7-21

[2]
Reverse biogradient biomimetic periosteum with osteogenic and angiogenic characteristics for bone regeneration.

Mater Today Bio. 2025-6-9

本文引用的文献

[1]
Nano-hydroxyapatite promotes cell apoptosis by co-activating endoplasmic reticulum stress and mitochondria damage to inhibit glioma growth.

Regen Biomater. 2024-4-18

[2]
Bio-functional hydroxyapatite-coated 3D porous polyetherketoneketone scaffold for enhanced osteogenesis and osteointegration in orthopedic applications.

Regen Biomater. 2024-3-14

[3]
QbD-Based Fabrication of Biomimetic Hydroxyapatite Embedded Gelatin Nanoparticles for Localized Drug Delivery against Deteriorated Arthritic Joint Architecture.

Macromol Biosci. 2024-2

[4]
Biomaterials combined with ADSCs for bone tissue engineering: current advances and applications.

Regen Biomater. 2023-9-12

[5]
Multifunctional Lithium-Doped Mesoporous Nanoparticles for Effective Dentin Regeneration in vivo.

Int J Nanomedicine. 2023

[6]
Electrospun Nanofiber Membranes with Various Structures for Wound Dressing.

Materials (Basel). 2023-9-1

[7]
Next-generation nanomaterials: advancing ocular anti-inflammatory drug therapy.

J Nanobiotechnology. 2023-8-19

[8]
Microwave-Assisted Hydrothermal Treatment of Multifunctional Substituted Hydroxyapatite with Prospective Applications in Bone Regeneration.

J Funct Biomater. 2023-7-19

[9]
Macrophage fusion event as one prerequisite for inorganic nanoparticle-induced antitumor response.

Sci Adv. 2023-7-21

[10]
Maternal methylmercury exposure during early-life periods adversely affects mature enamel structure of offspring rats at human exposure levels: a concern for oral health.

Front Public Health. 2023

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索