Suppr超能文献

尿酪氨酸蛋白激酶结合蛋白(TYROBP)和造血细胞激酶(HCK)作为IgA肾病非侵入性诊断和治疗靶点的遗传生物标志物。

Urinary TYROBP and HCK as genetic biomarkers for non-invasive diagnosis and therapeutic targeting in IgA nephropathy.

作者信息

Xie Boji, Pang Shuting, Xie Yuli, Tan Qiuyan, Li Shanshan, Jili Mujia, Huang Yian, Zhao Binran, Yuan Hao, Mi Junhao, Chen Xuesong, Ruan Liangping, Chen Hong, Li Xiaolai, Hu Boning, Huang Jing, Yang Rirong, Li Wei

机构信息

Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.

Guangxi Key Laboratory for Genomic and Personalized Medicine, Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, University Engineering Research Center of Digital Medicine and Healthcare, Guangxi Medical University, Nanning, Guangxi, China.

出版信息

Front Genet. 2024 Dec 24;15:1516513. doi: 10.3389/fgene.2024.1516513. eCollection 2024.

Abstract

BACKGROUND

IgA nephropathy (IgAN) is a leading cause of renal failure, but its pathogenesis remains unclear, complicating diagnosis and treatment. The invasive nature of renal biopsy highlights the need for non-invasive diagnostic biomarkers. Bulk RNA sequencing (RNA-seq) of urine offers a promising approach for identifying molecular changes relevant to IgAN.

METHODS

We performed bulk RNA-seq on 53 urine samples from 11 untreated IgAN patients and 11 healthy controls, integrating these data with public renal RNA-seq, microarray, and scRNA-seq datasets. Machine learning was used to identify key differentially expressed genes, with protein expression validated by immunohistochemistry (IHC) and drug-target interactions explored via molecular docking.

RESULTS

Urine RNA-seq analysis revealed differential expression profiles, from which and were identified as key biomarkers using machine learning. These biomarkers were validated in both a test cohort and an external validation cohort, demonstrating strong predictive accuracy. scRNA-seq confirmed their cell-specific expression patterns, correlating with renal function metrics such as GFR and serum creatinine. IHC further validated protein expression, and molecular docking suggested potential therapeutic interactions with IgAN treatments.

CONCLUSION

and are promising non-invasive urinary biomarkers for IgAN. Their predictive accuracy, validated through machine learning, along with IHC confirmation and molecular docking insights, supports their potential for both diagnostic and therapeutic applications in IgAN.

摘要

背景

IgA肾病(IgAN)是肾衰竭的主要原因,但其发病机制仍不清楚,这使得诊断和治疗变得复杂。肾活检的侵入性凸显了对非侵入性诊断生物标志物的需求。尿液的批量RNA测序(RNA-seq)为识别与IgAN相关的分子变化提供了一种有前景的方法。

方法

我们对11例未经治疗的IgAN患者和11例健康对照的53份尿液样本进行了批量RNA-seq,将这些数据与公开的肾脏RNA-seq、微阵列和单细胞RNA-seq数据集整合。使用机器学习来识别关键的差异表达基因,通过免疫组织化学(IHC)验证蛋白质表达,并通过分子对接探索药物-靶点相互作用。

结果

尿液RNA-seq分析揭示了差异表达谱,使用机器学习从中鉴定出[具体基因1]和[具体基因2]作为关键生物标志物。这些生物标志物在测试队列和外部验证队列中均得到验证,显示出很强的预测准确性。单细胞RNA-seq证实了它们的细胞特异性表达模式,与肾小球滤过率(GFR)和血清肌酐等肾功能指标相关。免疫组织化学进一步验证了蛋白质表达,分子对接表明与IgAN治疗存在潜在的治疗相互作用。

结论

[具体基因1]和[具体基因2]是有前景的IgAN非侵入性尿液生物标志物。它们通过机器学习验证的预测准确性,以及免疫组织化学确认和分子对接见解,支持了它们在IgAN诊断和治疗应用中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ff7/11703869/b22de37848d8/fgene-15-1516513-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验