生存素小干扰RNA功能化载联合药物的介孔二氧化硅纳米粒在肺癌小鼠模型中的抗癌疗效评估

Evaluation of anticancer efficacy of survivin si-RNA functionalized combined drug-loaded mesoporous silica nanoparticles in a lung cancer mouse model.

作者信息

Dilnawaz Fahima, Jena Sarita, Nayak Sunita

机构信息

School of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, Odisha, 752050, India.

Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India.

出版信息

Naunyn Schmiedebergs Arch Pharmacol. 2025 Jun;398(6):7545-7557. doi: 10.1007/s00210-024-03751-y. Epub 2025 Jan 8.

Abstract

Lung cancer continues to be the leading cause of mortality globally. Nanotechnology-mediated targeted drug delivery approach is one of the promising strategies for the treatment of lung cancer. Due to their multifactorial role, mesoporous silica nanoparticles (MSNs), have attracted a lot of attention for drug delivery. The emerging dual-drug co-delivery approach has drawn much attention due to circumventing various drug-resistant mechanisms in tumor cells. Further, functionalization of si-RNA (survivin) to the dual drugs (etoposide plus carfilzomib) or (docetaxel plus carfilzomib) loaded MSNs can be a potential tool to inhibit gene expression specifically. In the present study, we investigated the comparative therapeutic efficacy of co-delivered anticancer drugs functionalized with survivin siRNA in MSNs for lung cancer. According to our findings, this kind of combination therapy has inhibited the function of the survivin protein while promoting increased therapeutic efficacy due to synergistic pharmacological activity, and found si-RNA- (etoposide plus carfilzomib) to be a better candidate for lung cancer treatment in the future.

摘要

肺癌仍然是全球死亡率最高的疾病。纳米技术介导的靶向给药方法是治疗肺癌的有前景的策略之一。由于其多方面的作用,介孔二氧化硅纳米颗粒(MSNs)在药物递送方面引起了广泛关注。新兴的双药共递送方法因能规避肿瘤细胞中的各种耐药机制而备受关注。此外,将si-RNA(生存素)功能化到负载双药(依托泊苷加卡非佐米)或(多西他赛加卡非佐米)的MSNs上,可能是一种特异性抑制基因表达的潜在工具。在本研究中,我们调查了在MSNs中用生存素siRNA功能化的共递送抗癌药物对肺癌的比较治疗效果。根据我们的研究结果,这种联合疗法在抑制生存素蛋白功能的同时,由于协同药理活性提高了治疗效果,并且发现si-RNA-(依托泊苷加卡非佐米)是未来肺癌治疗的更好选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索