Suppr超能文献

用于在纯水中将CO光还原为乙醇且选择性达99.5%的氮桥联S-N-Cu位点

Nitrogen-Bridged S-N-Cu Sites for CO Photoreduction to Ethanol with 99.5 % Selectivity in Pure Water.

作者信息

Li Weilin, Liu Zheyang, Rhimi Baker, Zhou Min, Li Jing, Nie Kaiqi, Yan Binhang, Jiang Zhifeng, Shi Weidong, Xiong Yujie

机构信息

Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China.

Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

出版信息

Angew Chem Int Ed Engl. 2025 Mar 24;64(13):e202423859. doi: 10.1002/anie.202423859. Epub 2025 Jan 16.

Abstract

Solar-driven CO reduction to ethanol is extremely challenging due to the limited efficiency of charge separation, sluggish kinetics of C-C coupling, and unfavorable formation of oxygenate intermediates. Here, we elaborately design a red polymer carbon nitride (RPCN) consisting of S-N and Cu-N dual active sites (Cu/S-RPCN) to address this challenge, which achieves an impressive ethanol evolution rate of 50.4 μmol g h with 99.5 % selectivity for CO photoreduction in pure water. Cu and S atoms within the Cu-N-S configuration can serve as trapping centers for electrons and holes, respectively, providing spatial separation for photogenerated charge carriers. The incorporation of S atoms optimizes the adsorption of *CO on Cu atoms and reduces the energy barrier for the formation of *CO-COH intermediate. The adsorption strength of *OCHCHOH intermediate on the Cu atoms via the O-Cu-C configuration can affect the selectivity of the C products as the cleavage of the Cu-O/Cu-C bonds determines the ethanol/ethylene pathway. The S-N-Cu structure weakens the Cu-O bond, thereby promoting the production of ethanol. This work provides a novel approach to fine-tune the surrounding microenvironment of metal atoms on carbon nitride for highly effective photocatalytic conversion of CO to ethanol.

摘要

由于电荷分离效率有限、C-C偶联动力学缓慢以及含氧中间体形成不利,太阳能驱动的CO还原为乙醇极具挑战性。在此,我们精心设计了一种由S-N和Cu-N双活性位点组成的红色聚合物氮化碳(RPCN,即Cu/S-RPCN)来应对这一挑战,其在纯水中实现了令人印象深刻的乙醇析出速率50.4 μmol g⁻¹ h⁻¹,对CO光还原的选择性达99.5%。Cu-N-S构型中的Cu和S原子可分别作为电子和空穴的捕获中心,为光生载流子提供空间分离。S原子的引入优化了CO在Cu原子上的吸附,并降低了CO-COH中间体形成的能垒。*OCHCHOH中间体通过O-Cu-C构型在Cu原子上的吸附强度会影响C产物的选择性,因为Cu-O/Cu-C键的断裂决定了乙醇/乙烯路径。S-N-Cu结构削弱了Cu-O键,从而促进了乙醇的生成。这项工作为精细调节氮化碳上金属原子的周围微环境以实现CO高效光催化转化为乙醇提供了一种新方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验