Huang Fuxia, Wang Feng, Liu Ya, Guo Liejin
International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi, 710049, China.
Adv Mater. 2025 Feb;37(7):e2416708. doi: 10.1002/adma.202416708. Epub 2024 Dec 26.
The direct photocatalytic conversion of CO and HO into high-value C chemicals holds great promise but remains challenging due to the intrinsic difficulty of C-C and C-C coupling processes and the lack of clarity regarding the underlying reaction mechanisms. Here, the design and synthesis of a Cu-ZnS photocatalyst featuring dispersed Cu single atoms are reported. These Cu single atoms are coordinated with S atoms, forming unique Cu-S-Zn active units with tunable charge distributions that interact favorably with surface-adsorbed intermediates. This configuration stabilizes the COHCO intermediate and facilitates its subsequent coupling with CO to form COCOHCO both thermodynamically and kinetically favorable on the Cu-ZnS surface. Notably, multiple critical C intermediates, including COCOHCO, OCCCO, and CHCHCO, are identified, providing a clear reaction pathway for CO to CHCHCOOH conversion. The Cu-ZnS photocatalyst achieves a CO to CHCHCOOH conversion rate of 0.45 µmol h¹ with an electron selectivity of 91.2%. Remarkably, in the presence of triethanolamine, the production rate increases to 16.9 µmol h¹ with a selectivity of 99.8%. These findings underscore the importance of modulating multicarbon coupling processes to enable the efficient photocatalytic transformation of CO into C products, paving the way for future advancements in sustainable chemical synthesis.
将一氧化碳(CO)和水(H₂O)直接光催化转化为高价值含碳化学品具有广阔前景,但由于碳 - 碳(C - C)和碳 - 碳键偶联过程本身的困难以及潜在反应机制尚不清楚,仍然具有挑战性。在此,报道了一种具有分散铜单原子的Cu - ZnS光催化剂的设计与合成。这些铜单原子与硫原子配位,形成具有可调电荷分布的独特Cu - S - Zn活性单元,该活性单元与表面吸附的中间体具有良好的相互作用。这种构型稳定了COH₂CO中间体,并在热力学和动力学上都有利于其随后与CO偶联形成CO₂COH₂CO,在Cu - ZnS表面上进行。值得注意的是,鉴定出了多种关键的含碳中间体,包括CO₂COH₂CO、OCCCO和CH₃CH₂CO,为CO转化为CH₃CH₂COOH提供了清晰的反应途径。Cu - ZnS光催化剂实现了CO到CH₃CH₂COOH的转化率为0.45 μmol h⁻¹,电子选择性为91.2%。值得注意的是,在三乙醇胺存在下,产率提高到16.9 μmol h⁻¹,选择性为99.8%。这些发现强调了调节多碳偶联过程以实现CO高效光催化转化为含碳产物的重要性,为可持续化学合成的未来发展铺平了道路。