Manoj Lena Amrutha, Yamauchi Mitsuaki, Murakami Hideyuki, Kubo Naoki, Masuo Sadahiro, Matsuo Kyohei, Hayashi Hironobu, Aratani Naoki, Yamada Hiroko
Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.
Institute for Chemical Research, Kyoto University Gokasho, Uji, Kyoto, 611-0011, Japan.
Angew Chem Int Ed Engl. 2025 Mar 24;64(13):e202423912. doi: 10.1002/anie.202423912. Epub 2025 Jan 17.
Precise control of assembled structures of quantum dots (QDs) is crucial for realizing the desired photophysical properties, but this remains challenging. Especially, the one-dimensional (1D) control is rare due to the nearly isotropic nature of QDs. Herein, we propose a novel strategy for controlling the 1D-arrangement range of cubic perovskite QDs in solution based on the morphological modification of a supramolecular polymer (SP) template. The original template with a short and tangled fibrous structure is prepared in a low-polarity solvent mixture via self-assembly of a naphthalenediimide-functionalized cholesterol derivative with an adhesion group for QDs. Mixing this template with QDs leads to the co-aggregation into short-range 1D-arrays of QDs on the templates. Notably, subsequent heating and cooling of the co-aggregate solution forms longer-range 1D-arrays of QDs with lateral growth, where arranged QDs are sandwiched between reconstructed SP templates. Furthermore, the longer-range 1D-array of QDs is achieved via an alternative route involving the pre-organization of templates into longer and dispersed fibers by heating and cooling of the original template, succeeded by co-assembly with QDs. Finally, we reveal continuous fluorescence resonance energy transfer between 1D-arranged QDs by an in-depth analysis of the photoluminescence decay curves.
精确控制量子点(QD)的组装结构对于实现所需的光物理性质至关重要,但这仍然具有挑战性。特别是,由于量子点几乎各向同性的性质,一维(1D)控制很少见。在此,我们提出了一种基于超分子聚合物(SP)模板形态修饰来控制溶液中立方钙钛矿量子点一维排列范围的新策略。通过具有量子点粘附基团的萘二亚胺功能化胆固醇衍生物在低极性溶剂混合物中自组装制备具有短而缠结纤维结构的原始模板。将该模板与量子点混合会导致它们在模板上共聚集形成量子点的短程一维阵列。值得注意的是,随后对共聚集溶液进行加热和冷却会形成具有横向生长的量子点的长程一维阵列,其中排列的量子点夹在重构的SP模板之间。此外,通过另一种途径也可以实现量子点的长程一维阵列,该途径包括通过对原始模板进行加热和冷却将模板预组织成更长且分散的纤维,然后与量子点共组装。最后,通过对光致发光衰减曲线的深入分析,我们揭示了一维排列的量子点之间的连续荧光共振能量转移。