Waples Robin S, Masuda Michele M, LaCava Melanie E F, Finger Amanda J
School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA.
Auke Bay Laboratories, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, Juneau, Alaska, USA.
Mol Ecol Resour. 2025 Oct;25(7):e14057. doi: 10.1111/1755-0998.14057. Epub 2025 Jan 7.
We introduce a new software program, MaxTemp, that increases precision of the temporal method for estimating effective population size (N) in genetic monitoring programs, which are increasingly used to systematically track changes in global biodiversity. Scientists and managers are typically most interested in N for individual generations, either to match with single-generation estimates of census size (N) or to evaluate consequences of specific management actions or environmental events. Systematically sampling every generation produces a time series of single-generation estimates of temporal F ( , which can then be used to estimate N; however, these estimates have relatively low precision because each reflects just a single episode of genetic drift. Systematic sampling also produces an array of multigenerational temporal estimates that collectively contain a great deal of information about genetic drift that, however, can be difficult to interpret. Here, we show how additional information contained in multigenerational temporal estimates can be leveraged to increase precision of for individual generations. Using information from one additional generation before and after a target generation can reduce the standard deviation of ( ) by up to 50%, which not only tightens confidence intervals around but also reduces the incidence of extreme estimates, including infinite estimates of N. Practical application of MaxTemp is illustrated with data for a long-term genetic monitoring program for California delta smelt. A second feature of MaxTemp, which allows one to estimate N in an unsampled generation using a combination of temporal and single-sample estimates of N from sampled generations, is also described and evaluated.
我们引入了一个新的软件程序MaxTemp,它提高了在遗传监测项目中估计有效种群大小(N)的时间方法的精度,遗传监测项目越来越多地被用于系统地追踪全球生物多样性的变化。科学家和管理人员通常最关注单个世代的N,要么是为了与普查规模(N)的单代估计值相匹配,要么是为了评估特定管理行动或环境事件的后果。对每一代进行系统抽样会产生时间序列的单代时间F( )估计值,然后可用于估计N;然而,这些估计值的精度相对较低,因为每个估计值仅反映了一次遗传漂变事件。系统抽样还会产生一系列多代时间估计值,这些估计值共同包含了大量有关遗传漂变的信息,然而,这些信息可能难以解释。在这里,我们展示了如何利用多代时间估计值中包含的额外信息来提高单个世代的 的精度。使用目标世代前后另外一代的信息可以将 ( )的标准差降低多达50%,这不仅收紧了 周围的置信区间,还减少了极端估计值的发生率,包括N的无穷估计值。通过加利福尼亚三角洲鳟鱼长期遗传监测项目的数据说明了MaxTemp的实际应用。还描述并评估了MaxTemp的第二个功能,该功能允许使用来自抽样世代的N的时间估计值和单样本估计值的组合来估计未抽样世代的N。