Suppr超能文献

纳米医学解锁的射频动态疗法可减轻不完全射频消融引起的免疫抑制,从而抑制癌症复发。

Nanomedicine-unlocked radiofrequency dynamic therapy dampens incomplete radiofrequency ablation-arised immunosuppression to suppress cancer relapse.

作者信息

Fang Yan, Hu Feixiang, Ren Weiwei, Xiang Lihua, Wang Taixia, Zhu Chunyan, He Ruiqing, Dong Xiulin, Liu Chang, Ding Hong, Zhang Kun

机构信息

Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, China. No. 12 Urumqi Middle Road, Shanghai 200040, China; Department of Laboratory Medicine and Department of Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China.

Department of Radiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, No. 270 Dong'an Road, Xuhui District, Shanghai, 200032, China.

出版信息

Biomaterials. 2025 Jun;317:123087. doi: 10.1016/j.biomaterials.2025.123087. Epub 2025 Jan 2.

Abstract

Incomplete radiofrequency ablation (iRFA) not only leaves residual tumor, but also render the residual tumor highly self-adaptable and immunosuppressive, consequently expediting residual tumor progression including relapse. To address it, radiofrequency dynamic therapy (RFDT) with identical trigger (namely radiofrequency) has been established and enabled by polyethylene glycol (PEG)-modified Fe-based single atom nanozyme (P@Fe SAZ). P@Fe SAZ can respond to radiofrequency field to produce reactive oxygen species (ROS), attaining the nanomedicine-unlocked low-temperature RFDT. Systematic experiments reveal that ROS further remodels iRFA-potentiated immunosuppressive microenvironment, e.g., expediting tumor-associated macrophages (TAMs) polarization into TAMs-M1, rejecting the intratumoral infiltrations of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). Coincidently, they have been demonstrated to stimulate dendritic cells (DCs) maturation and encourage the proliferations and infiltrations of effector T cells, consequently boosting anti-tumor immune responses and attenuating iRFA-enhanced plasticity, treatment resistance and self-adaptation of residual hepatocellular carcinoma (HCC) after iRFA. Thanks to them, such a nanomedicine-unlocked low-temperature RFDT exerts powerful actions on residual HCC model after iRFA with rapid expansion inhibition, relapse repression, survival prolongation, apoptosis promotion, etc. This low-temperature RFDT opens a window to address the iRFA-enhanced immunosuppression.

摘要

不完全射频消融(iRFA)不仅会留下残余肿瘤,还会使残余肿瘤具有高度的自我适应性和免疫抑制性,从而加速残余肿瘤的进展,包括复发。为了解决这一问题,通过聚乙二醇(PEG)修饰的铁基单原子纳米酶(P@Fe SAZ)建立并实现了具有相同触发因素(即射频)的射频动态疗法(RFDT)。P@Fe SAZ可以响应射频场产生活性氧(ROS),实现纳米药物解锁的低温RFDT。系统实验表明,ROS进一步重塑了iRFA增强的免疫抑制微环境,例如加速肿瘤相关巨噬细胞(TAM)向M1型TAM极化,抑制髓源性抑制细胞(MDSC)和调节性T细胞(Treg)的瘤内浸润。巧合的是,它们已被证明能刺激树突状细胞(DC)成熟,并促进效应T细胞的增殖和浸润,从而增强抗肿瘤免疫反应,减弱iRFA增强的残余肝细胞癌(HCC)的可塑性、治疗抗性和自我适应性。得益于这些作用,这种纳米药物解锁的低温RFDT对iRFA后的残余HCC模型具有强大作用,具有快速抑制肿瘤生长、抑制复发、延长生存期、促进凋亡等效果。这种低温RFDT为解决iRFA增强的免疫抑制问题打开了一扇窗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验