Jiao Xinze, Zhang Jianjie, Cao Jianhui
College of Mechanical Engineering, Xinjiang University, Urumqi 830017, China.
Sensors (Basel). 2025 Jun 12;25(12):3686. doi: 10.3390/s25123686.
Bearing fault diagnosis under varying operating conditions faces challenges of domain shift and labeled data scarcity. This paper proposes a dual-stream hybrid-domain adaptation network (DS-HDA Net) that fuses CNN-extracted time-domain features with MLP-processed frequency-domain features for comprehensive fault representation. The method employs hierarchical domain adaptation: marginal distribution adaptation (MDA) for global alignment and conditional domain adaptation (CDA) for class-conditional alignment. A novel soft pseudo-label generation mechanism combining Gaussian mixture models (GMMs) with the Mahalanobis distance provides reliable supervisory signals for unlabeled target domain data. Extensive experiments on the Paderborn University and Jiangnan University datasets demonstrate that DS-HDA Net achieves average accuracy values of 99.43% and 99.56%, respectively, significantly outperforming state-of-the-art methods. The approach effectively addresses bearing fault diagnosis under complex operating conditions with minimal labeled data requirements.
在不同运行条件下进行轴承故障诊断面临领域转移和标记数据稀缺的挑战。本文提出了一种双流混合域自适应网络(DS-HDA Net),该网络将卷积神经网络(CNN)提取的时域特征与多层感知器(MLP)处理的频域特征相融合,以实现全面的故障表征。该方法采用分层域自适应:用于全局对齐的边际分布自适应(MDA)和用于类条件对齐的条件域自适应(CDA)。一种将高斯混合模型(GMM)与马氏距离相结合的新型软伪标签生成机制为未标记的目标域数据提供了可靠的监督信号。在帕德博恩大学和江南大学数据集上进行的大量实验表明,DS-HDA Net分别实现了99.43%和99.56%的平均准确率,显著优于现有方法。该方法以最少的标记数据需求有效地解决了复杂运行条件下的轴承故障诊断问题。