Mougkogiannis Panagiotis, Adamatzky Andrew
Unconventional Computing Laboratory, University of the West of England, Bristol BS16 1QY, U.K.
ACS Appl Bio Mater. 2025 Jan 20;8(1):854-869. doi: 10.1021/acsabm.4c01678. Epub 2025 Jan 8.
This study examines the relationship between chondroitin sulfate, proteinoids, and computational neuron models, with a specific emphasis on the Izhikevich neuron model. We investigate the effect of chondroitin sulfate-proteinoid complexes on the behavior and dynamics of simulated neurons. Through the use of computational simulations, we provide evidence that these biomolecular components have the power to regulate the responsiveness of neurons, the patterns of their firing, and the ability of their synapses to change within the Izhikevich architecture. The findings suggest that the interactions between chondroitin sulfate and proteinoid cause notable alterations in the dynamics of membrane potential and the timing of spikes. We detect adjustments in the features of neuronal responses, such as shifts in the thresholds for firing, alterations in spike frequency adaptation, and changes to bursting patterns. The findings indicate that chondroitin sulfate and proteinoids may have a role in precisely adjusting neuronal information processing and network behavior. This study offers valuable information about the complex connection between the many components of the extracellular matrix, protein-based structures, and the functioning of neurons. In addition, our analysis of the proteinoid-chondroitine system using game theory uncovers a significant Prisoner's Dilemma scenario. The system's inclination toward defection, due to the appeal of cheating and the significant penalty for cooperation, with a mean voltage of -9.19 mV, indicates that defective behaviors may prevail in the long term dynamics of these neuronal interactions.
本研究考察硫酸软骨素、类蛋白与计算神经元模型之间的关系,特别着重于艾兹海默神经元模型。我们研究硫酸软骨素 - 类蛋白复合物对模拟神经元行为和动力学的影响。通过计算模拟,我们提供证据表明这些生物分子成分有能力调节神经元的反应性、放电模式以及其突触在艾兹海默结构内变化的能力。研究结果表明硫酸软骨素和类蛋白之间的相互作用会导致膜电位动力学和尖峰时间的显著改变。我们检测到神经元反应特征的调整,例如放电阈值的变化、放电频率适应性的改变以及爆发模式的变化。研究结果表明硫酸软骨素和类蛋白可能在精确调节神经元信息处理和网络行为方面发挥作用。本研究提供了关于细胞外基质的多种成分、基于蛋白质的结构与神经元功能之间复杂联系的有价值信息。此外,我们使用博弈论对类蛋白 - 软骨素系统的分析揭示了一个显著的囚徒困境情景。由于欺骗的吸引力和合作的重大惩罚,该系统倾向于背叛,平均电压为 -9.19 mV,这表明缺陷行为可能在这些神经元相互作用的长期动态中占主导。