Zhang Naizhong, Prokhorov Ivan, Kueter Nico, Li Gang, Tuzson Béla, Magyar Paul M, Ebert Volker, Sivan Malavika, Nakagawa Mayuko, Gilbert Alexis, Ueno Yuichiro, Yoshida Naohiro, Röckmann Thomas, Bernasconi Stefano M, Emmenegger Lukas, Mohn Joachim
Laboratory for Air Pollution/Environmental Technology, Empa, 8600 Dübendorf, Switzerland.
Department of Earth and Planetary Science, ETH Zurich, 8092 Zürich, Switzerland.
Anal Chem. 2025 Jan 21;97(2):1291-1299. doi: 10.1021/acs.analchem.4c05406. Epub 2025 Jan 8.
Mid-infrared laser absorption spectroscopy enables rapid and nondestructive analysis of methane clumped isotopes. However, current analytical methods require a sample size of 20 mL STP (0.82 mmol) of pure CH gas, which significantly limits its application to natural samples. To enhance the performance of spectroscopic measurement of methane clumped isotopes, we established a laser spectroscopic platform with newly selected spectral windows for clumped isotope analysis: 1076.97 cm for CHD and 1163.47 cm for CHD, and a custom-built gas inlet system. These spectral windows were identified through an extensive spectral survey on newly recorded high-resolution Fourier transform infrared (FTIR) spectra across the wavelength range of 870-3220 cm, thereby addressing gaps for CHD in existing spectral databases. In addition, we implemented several key technological advances, which result in superior control and performance of sample injection and analysis. We demonstrate that for small samples ranging from 3 to 10 mL (0.12-0.41 mmol) of CH gas, a measurement precision comparable to high-resolution isotope ratio mass spectrometry for ΔCHD (∼1.5‰) can be achieved through 3 to 8 repetitive measurements using a recycle-refilling system within a few hours. Samples larger than 10 mL can be quantified in under 20 min. At the same time, for ΔCHD analysis a repeatability of 0.05‰, superior to mass spectrometry, was realized. These advancements in reducing sample size and shortening analysis time significantly improve the practicality of the spectroscopic technique for determining the clumped isotope signatures of natural methane samples, particularly for applications involving low CH concentrations or requiring consecutive analyses, which are feasible in conjunction with an automated preconcentration system.
中红外激光吸收光谱法能够对甲烷团簇同位素进行快速且无损的分析。然而,目前的分析方法需要20 mL标准温度和压力(STP)(0.82 mmol)的纯CH₄气体作为样本,这极大地限制了其在天然样本中的应用。为了提高甲烷团簇同位素光谱测量的性能,我们建立了一个激光光谱平台,该平台采用了新选定的用于团簇同位素分析的光谱窗口:CH₂D₂的1076.97 cm⁻¹和CHD₃的1163.47 cm⁻¹,以及一个定制的气体进样系统。这些光谱窗口是通过对新记录的870 - 3220 cm⁻¹波长范围内的高分辨率傅里叶变换红外(FTIR)光谱进行广泛的光谱调查确定的,从而填补了现有光谱数据库中CH₂D₂的空白。此外,我们实施了多项关键技术改进,从而实现了对样品进样和分析的卓越控制与性能。我们证明,对于3至10 mL(0.12 - 0.41 mmol)的CH₄气体小样本,通过在几小时内使用循环再填充系统进行3至8次重复测量,可以实现与高分辨率同位素比率质谱法相当的Δ¹³CH₂D₂测量精度(约1.5‰)。大于10 mL的样本可在20分钟内完成定量分析。同时,对于Δ¹³CH₂D₂分析,实现了优于质谱法的0.05‰的重复性。这些在减小样本量和缩短分析时间方面的进展显著提高了光谱技术在确定天然甲烷样本团簇同位素特征方面的实用性,特别是对于涉及低CH₄浓度或需要连续分析的应用,结合自动预浓缩系统是可行的。