Suppr超能文献

通过可调谐红外激光直接吸收光谱法测量双取代甲烷同位素分子¹³CH₃D。

Measurement of a doubly substituted methane isotopologue, ¹³CH₃D, by tunable infrared laser direct absorption spectroscopy.

作者信息

Ono Shuhei, Wang David T, Gruen Danielle S, Sherwood Lollar Barbara, Zahniser Mark S, McManus Barry J, Nelson David D

机构信息

Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States.

出版信息

Anal Chem. 2014 Jul 1;86(13):6487-94. doi: 10.1021/ac5010579. Epub 2014 Jun 18.

Abstract

Methane is an important energy resource and significant long-lived greenhouse gas. Carbon and hydrogen isotope ratios have been used to better constrain the sources of methane but interpretations based on these two parameters alone can often be inconclusive. The precise measurement of a doubly substituted methane isotopologue, (13)CH3D, is expected to add a critical new dimension to source signatures by providing the apparent temperature at which methane was formed or thermally equilibrated. We have developed a new method to precisely determine the relative abundance of (13)CH3D by using tunable infrared laser direct absorption spectroscopy (TILDAS). The TILDAS instrument houses two continuous wave quantum cascade lasers; one tuned at 8.6 μm to measure (13)CH3D, (12)CH3D, and (12)CH4, and the other at 7.5 μm to measure (13)CH4. With the use of an astigmatic Herriott cell with an effective path length of 76 m, a precision of 0.2‰ (2σ) was achieved for the measurement of (13)CH3D abundance in ca. 10 mL STP (i.e., 0.42 mmol) pure methane samples. Smaller quantity samples (ca. 0.5 mL STP) can be measured at lower precision. The accuracy of the Δ(13)CH3D measurement is 0.7‰ (2σ), evaluated by thermally equilibrating methane with a range of δD values. The precision of ±0.2‰ corresponds to uncertainties of ±7 °C at 25 °C and ±20 °C at 200 °C for estimates of apparent equilibrium temperatures. The TILDAS instrument offers a simple and precise method to determine (13)CH3D in natural methane samples to distinguish geological and biological sources of methane in the atmosphere, hydrosphere, and lithosphere.

摘要

甲烷是一种重要的能源,也是一种重要的长期存在的温室气体。碳和氢同位素比率已被用于更好地确定甲烷的来源,但仅基于这两个参数的解释往往无法得出结论。对双取代甲烷同位素体(13)CH3D的精确测量,有望通过提供甲烷形成或热平衡时的表观温度,为源特征增添一个关键的新维度。我们开发了一种新方法,通过可调谐红外激光直接吸收光谱法(TILDAS)精确测定(13)CH3D的相对丰度。TILDAS仪器配备了两台连续波量子级联激光器;一台调谐到8.6μm以测量(13)CH3D、(12)CH3D和(12)CH4,另一台调谐到7.5μm以测量(13)CH4。使用有效光程为76 m的像散赫里奥特池,在约10 mL标准温度和压力(即0.42 mmol)的纯甲烷样品中测量(13)CH3D丰度时,精度达到了0.2‰(2σ)。较小量的样品(约0.5 mL标准温度和压力)可以在较低精度下测量。通过使甲烷与一系列δD值进行热平衡来评估,(13)CH3D测量的准确度为0.7‰(2σ)。±0.2‰的精度对应于在25℃时表观平衡温度估计的±7℃不确定性和在200℃时的±20℃不确定性。TILDAS仪器提供了一种简单而精确的方法来测定天然甲烷样品中的(13)CH3D,以区分大气圈、水圈和岩石圈中甲烷的地质和生物来源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验