Suppr超能文献

钼硫化物限制的铑-锌原子对促进光驱动甲烷羰基化制乙酸反应。

MoS-confined Rh-Zn atomic pair boosts photo-driven methane carbonylation to acetic acid.

作者信息

Li Yanan, Liu Huan, Mao Jun, Gao Meng, Zhang Yunlong, Zhao Qiao, Liu Meng, Song Yao, Hu Jingting, Zhang Wangwang, Huang Rui, Zhou Wu, Wu Kaifeng, Liu Wei, Yu Liang, Cui Xiaoju, Deng Dehui

机构信息

State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.

State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.

出版信息

Nat Commun. 2025 Jan 8;16(1):487. doi: 10.1038/s41467-024-54061-z.

Abstract

Direct carbonylation of CH to CHCOOH provides a promising pathway for upgrading of natural gas to transportable liquid chemicals, in which high-efficiency CH activation and controllable C-C coupling are both critical but challenging. Herein, we report that highly efficient photo-driven carbonylation of CH with CO and O to CHCOOH is achieved over MoS-confined Rh-Zn atomic-pair in conjunction with TiO. It delivers a high CHCOOH productivity of 152.0 μmol g h and turnover frequency of 62.0 h with a superior selectivity of 96.5%, outperforming previous photocatalytic CH carbonylation processes. Mechanistic investigations disclose the key effect of Rh-Zn synergy in combination with photo-excited electrons from TiO for CHCOOH formation. The active OH species produced from O photoreduction on the Zn site through proton-coupled electron transfer promotes CH dissociation to CH species, which then facilely couples with adsorbed CO on the adjacent Rh site forming the key CHCO intermediate for CHCOOH formation.

摘要

将CH直接羰基化为CHCOOH为天然气升级转化为可运输的液体化学品提供了一条很有前景的途径,其中高效的CH活化和可控的C-C偶联都是关键但具有挑战性的。在此,我们报道了在MoS限域的Rh-Zn原子对与TiO结合的情况下,实现了CH与CO和O高效光驱动羰基化生成CHCOOH。它具有152.0 μmol g h的高CHCOOH产率和62.0 h的周转频率,选择性高达96.5%,优于以往的光催化CH羰基化过程。机理研究揭示了Rh-Zn协同作用与来自TiO的光激发电子相结合对CHCOOH形成的关键作用。通过质子耦合电子转移在Zn位点上由O光还原产生的活性OH物种促进CH离解为CH物种,然后该物种与相邻Rh位点上吸附的CO轻松偶联,形成用于CHCOOH形成的关键CHCO中间体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2136/11711459/67b55b4dbd06/41467_2024_54061_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验