Fady Paul-Enguerrand, Richardson Alexandra K, Barron Leon P, Mason A James, Volpe Roberto, Barr Meredith R
Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
Biosecurity Policy Unit, The Centre for Long-Term Resilience, 71-75 Shelton Street, London, WC2H 9JQ, UK.
Sci Rep. 2025 Jan 8;15(1):1256. doi: 10.1038/s41598-024-83825-2.
Antimicrobial resistance (AMR) is a major cause of death worldwide, with 1.27 M direct deaths from bacterial drug-resistant infections as of 2019. Dissemination of multidrug-resistant (MDR) bacteria in the environment, in conjunction with pharmapollution by active pharmaceutical ingredients (APIs), create and foster an environmental reservoir of AMR. Creative solutions are required to mitigate environmental AMR, while taking into consideration other aspects of the planetary "Triple Crisis" of pollution, biodiversity loss, and climate change. Waste lignocellulosic biomass (LCB), a byproduct of agriculture and forestry, is the largest stream of non-edible biomass globally. Through pyrolysis, waste LCB can be converted into biochars, which have excellent attributes for adsorption of pollutants-though no studies have yet reliably correlated production conditions with efficacy, nor considered adsorption of human pathogens. By leveraging a bespoke pyrolysis reactor with precisely controlled parameters, we show that production conditions substantially affect sequestration of clinical bacterial isolates, removing up to 94% of Pseudomonas aeruginosa RP73 and 85% of Staphylococcus aureus EMRSA-15. In addition, we show that chars produced at higher peak pyrolysis temperatures (450 °C) can remove up to 88% of the antibiotic clarithromycin from wastewater, as well as significant proportions of many other APIs with varied physicochemical characteristics. These findings provide a first-in-kind insight into how production conditions affect the ability of biochars to mitigate environmental AMR.
抗菌素耐药性(AMR)是全球主要的死亡原因,截至2019年,细菌性耐药感染导致127万人直接死亡。环境中多重耐药(MDR)细菌的传播,加上活性药物成分(API)造成的药物污染,形成并促进了AMR的环境储存库。需要创造性的解决方案来减轻环境AMR,同时考虑到污染、生物多样性丧失和气候变化这一全球“三重危机”的其他方面。废弃木质纤维素生物质(LCB)是农业和林业的副产品,是全球最大的不可食用生物质流。通过热解,废弃LCB可以转化为生物炭,生物炭具有吸附污染物的优良特性——尽管尚未有研究可靠地将生产条件与功效相关联,也未考虑对人类病原体的吸附。通过利用一个参数精确控制的定制热解反应器,我们表明生产条件会显著影响临床细菌分离株的固存,去除高达94%的铜绿假单胞菌RP73和85%的耐甲氧西林金黄色葡萄球菌EMRSA-15。此外,我们表明在较高热解峰值温度(450°C)下产生的生物炭可以从废水中去除高达88%的抗生素克拉霉素,以及许多其他具有不同物理化学特性的API的很大比例。这些发现首次深入了解了生产条件如何影响生物炭减轻环境AMR的能力。