Suppr超能文献

用于无人机遥感目标检测的轻量级多维特征增强算法LPS-YOLO

Lightweight multidimensional feature enhancement algorithm LPS-YOLO for UAV remote sensing target detection.

作者信息

Lu Yong, Sun Minghao

机构信息

Key Laboratory of Ethnic Language Intelligent Analysis and Security Governance of MOE, School of Information Engineering, Minzu University of China, Beijing, 100081, China.

出版信息

Sci Rep. 2025 Jan 8;15(1):1340. doi: 10.1038/s41598-025-85488-z.

Abstract

Detecting small targets in UAV remote sensing images is challenging for traditional lightweight methods due to difficulty in feature extraction and high background interference. We propose LPS-YOLO, which improves small target feature extraction while reducing computational complexity by replacing the Conv backbone with SPDConv to retain fine-grained features. LPS-YOLO introduces the SKAPP module for better feature fusion and incorporates the E-BiFPN and OFTP structures to efficiently preserve and transfer backbone information. Evaluation of the VisDrone2019 dataset shows a 17.3% increase in mean Average Precision (mAP) and a 42.5% reduction in parameters compared to the baseline. Additional experiments on the DOTAv2 dataset demonstrate the model's robustness, with a 14.5% improvement in F1 score and a 14.9% increase in mAP over YOLOv8-n. LPS-YOLO offers an effective solution for multi-target detection in UAVs.

摘要

对于传统的轻量级方法而言,在无人机遥感图像中检测小目标具有挑战性,这是因为特征提取困难且背景干扰大。我们提出了LPS-YOLO,它通过用SPDConv替换卷积主干来改进小目标特征提取,同时降低计算复杂度,以保留细粒度特征。LPS-YOLO引入了SKAPP模块以实现更好的特征融合,并结合了E-BiFPN和OFT P结构来有效地保存和传递主干信息。对VisDrone2019数据集的评估表明,与基线相比,平均精度均值(mAP)提高了17.3%,参数减少了42.5%。在DOTAv2数据集上的额外实验证明了该模型的鲁棒性,与YOLOv8-n相比,F1分数提高了14.5%,mAP提高了14.9%。LPS-YOLO为无人机中的多目标检测提供了一种有效的解决方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验