He Lu-Hao, Zhou Yong-Zhang, Liu Lei, Cao Wei, Ma Jian-Hua
School of Earth Sciences and Engineering, Sun Yat-Sen University, Zhuhai, 519000, China.
Guangdong Provincial Key Laboratory of Geological Processes and Mineral Resources, Sun Yat-Sen University, Zhuhai, 519000, China.
Sci Rep. 2025 Apr 23;15(1):14032. doi: 10.1038/s41598-025-96314-x.
This study applies the YOLOv11 model to train and detect ground object targets in high-resolution remote sensing images, aiming to evaluate its potential in enhancing detection accuracy and efficiency. The model was trained on 70,389 samples across 20 target categories. After 496 training epochs, the loss functions (Box_Loss, Cls_Loss, and DFL_Loss) demonstrated rapid convergence, indicating effective optimization in target localization, classification, and detail refinement. The evaluation metrics yielded a precision of 0.8861, a recall of 0.8563, a map of 0.8920, a map of 0.8646, and an F1 score of 0.8709, highlighting the model's high accuracy and robustness in addressing complex detection tasks. Furthermore, 80% of the test samples achieved confidence scores exceeding 85%, confirming the reliability of YOLOv11 in multiclass and multiobject detection scenarios. These findings suggest that YOLOv11 holds significant promise for remote sensing image target detection, demonstrating exceptional detection performance while offering robust technical support for intelligent remote sensing image analysis. Future studies will focus on expanding the dataset, refining the model architecture, and improving its performance in detecting small targets and processing complex scenes, paving the way for its broader applications in environmental protection, urban planning, and multiobject detection.
本研究应用YOLOv11模型对高分辨率遥感影像中的地面目标进行训练和检测,旨在评估其在提高检测精度和效率方面的潜力。该模型在20个目标类别、70389个样本上进行训练。经过496个训练轮次后,损失函数(Box_Loss、Cls_Loss和DFL_Loss)显示出快速收敛,表明在目标定位、分类和细节细化方面得到了有效优化。评估指标得出的精度为0.8861,召回率为0.8563,mAP为0.8920,mAP为0.8646,F1分数为0.8709,突出了该模型在处理复杂检测任务时的高精度和鲁棒性。此外,80%的测试样本置信度得分超过85%,证实了YOLOv11在多类别和多目标检测场景中的可靠性。这些发现表明,YOLOv11在遥感影像目标检测方面具有巨大潜力,展现出卓越的检测性能,并为智能遥感影像分析提供了强大的技术支持。未来的研究将集中在扩大数据集、优化模型架构以及提高其在检测小目标和处理复杂场景方面的性能,为其在环境保护、城市规划和多目标检测等更广泛的应用铺平道路。