文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

医学大语言模型容易受到数据中毒攻击。

Medical large language models are vulnerable to data-poisoning attacks.

作者信息

Alber Daniel Alexander, Yang Zihao, Alyakin Anton, Yang Eunice, Rai Sumedha, Valliani Aly A, Zhang Jeff, Rosenbaum Gabriel R, Amend-Thomas Ashley K, Kurland David B, Kremer Caroline M, Eremiev Alexander, Negash Bruck, Wiggan Daniel D, Nakatsuka Michelle A, Sangwon Karl L, Neifert Sean N, Khan Hammad A, Save Akshay Vinod, Palla Adhith, Grin Eric A, Hedman Monika, Nasir-Moin Mustafa, Liu Xujin Chris, Jiang Lavender Yao, Mankowski Michal A, Segev Dorry L, Aphinyanaphongs Yindalon, Riina Howard A, Golfinos John G, Orringer Daniel A, Kondziolka Douglas, Oermann Eric Karl

机构信息

Department of Neurosurgery, NYU Langone Health, New York, NY, USA.

New York University Grossman School of Medicine, New York, NY, USA.

出版信息

Nat Med. 2025 Feb;31(2):618-626. doi: 10.1038/s41591-024-03445-1. Epub 2025 Jan 8.


DOI:10.1038/s41591-024-03445-1
PMID:39779928
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11835729/
Abstract

The adoption of large language models (LLMs) in healthcare demands a careful analysis of their potential to spread false medical knowledge. Because LLMs ingest massive volumes of data from the open Internet during training, they are potentially exposed to unverified medical knowledge that may include deliberately planted misinformation. Here, we perform a threat assessment that simulates a data-poisoning attack against The Pile, a popular dataset used for LLM development. We find that replacement of just 0.001% of training tokens with medical misinformation results in harmful models more likely to propagate medical errors. Furthermore, we discover that corrupted models match the performance of their corruption-free counterparts on open-source benchmarks routinely used to evaluate medical LLMs. Using biomedical knowledge graphs to screen medical LLM outputs, we propose a harm mitigation strategy that captures 91.9% of harmful content (F1 = 85.7%). Our algorithm provides a unique method to validate stochastically generated LLM outputs against hard-coded relationships in knowledge graphs. In view of current calls for improved data provenance and transparent LLM development, we hope to raise awareness of emergent risks from LLMs trained indiscriminately on web-scraped data, particularly in healthcare where misinformation can potentially compromise patient safety.

摘要

在医疗保健领域采用大语言模型(LLMs)需要仔细分析其传播错误医学知识的可能性。由于大语言模型在训练期间会从开放互联网摄取大量数据,它们有可能接触到未经证实的医学知识,其中可能包括故意植入的错误信息。在此,我们进行了一项威胁评估,模拟针对用于大语言模型开发的流行数据集The Pile的数据中毒攻击。我们发现,仅用0.001%的医学错误信息替换训练令牌就会导致有害模型更有可能传播医疗错误。此外,我们发现,在常用于评估医学大语言模型的开源基准测试中,被破坏的模型与未被破坏的模型表现相当。通过使用生物医学知识图谱来筛选医学大语言模型的输出,我们提出了一种减轻危害的策略,该策略能够捕捉91.9%的有害内容(F1 = 85.7%)。我们的算法提供了一种独特的方法,可根据知识图谱中的硬编码关系验证随机生成的大语言模型输出。鉴于当前对改进数据来源和透明的大语言模型开发的呼吁,我们希望提高人们对在网络抓取数据上进行无差别训练的大语言模型所带来的新出现风险的认识,尤其是在医疗保健领域,错误信息可能会对患者安全造成潜在威胁。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be4/11835729/56dcc207919b/41591_2024_3445_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be4/11835729/9f6f30561efc/41591_2024_3445_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be4/11835729/336385c74328/41591_2024_3445_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be4/11835729/5b817091861e/41591_2024_3445_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be4/11835729/4df055608a8b/41591_2024_3445_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be4/11835729/860a3cc9683c/41591_2024_3445_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be4/11835729/18d86c6c892f/41591_2024_3445_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be4/11835729/4d2b1154ea2c/41591_2024_3445_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be4/11835729/75c7a32dde66/41591_2024_3445_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be4/11835729/56dcc207919b/41591_2024_3445_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be4/11835729/9f6f30561efc/41591_2024_3445_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be4/11835729/336385c74328/41591_2024_3445_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be4/11835729/5b817091861e/41591_2024_3445_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be4/11835729/4df055608a8b/41591_2024_3445_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be4/11835729/860a3cc9683c/41591_2024_3445_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be4/11835729/18d86c6c892f/41591_2024_3445_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be4/11835729/4d2b1154ea2c/41591_2024_3445_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be4/11835729/75c7a32dde66/41591_2024_3445_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4be4/11835729/56dcc207919b/41591_2024_3445_Fig9_ESM.jpg

相似文献

[1]
Medical large language models are vulnerable to data-poisoning attacks.

Nat Med. 2025-2

[2]
Medical Misinformation in AI-Assisted Self-Diagnosis: Development of a Method (EvalPrompt) for Analyzing Large Language Models.

JMIR Form Res. 2025-3-10

[3]
Using Generative Artificial Intelligence in Health Economics and Outcomes Research: A Primer on Techniques and Breakthroughs.

Pharmacoecon Open. 2025-4-29

[4]
A dataset and benchmark for hospital course summarization with adapted large language models.

J Am Med Inform Assoc. 2025-3-1

[5]
An Automatic and End-to-End System for Rare Disease Knowledge Graph Construction Based on Ontology-Enhanced Large Language Models: Development Study.

JMIR Med Inform. 2024-12-18

[6]
Potential of Large Language Models in Health Care: Delphi Study.

J Med Internet Res. 2024-5-13

[7]
Large Language Models in Worldwide Medical Exams: Platform Development and Comprehensive Analysis.

J Med Internet Res. 2024-12-27

[8]
Large Language Models and User Trust: Consequence of Self-Referential Learning Loop and the Deskilling of Health Care Professionals.

J Med Internet Res. 2024-4-25

[9]
Identification of Online Health Information Using Large Pretrained Language Models: Mixed Methods Study.

J Med Internet Res. 2025-5-14

[10]
Exposing Vulnerabilities in Clinical LLMs Through Data Poisoning Attacks: Case Study in Breast Cancer.

medRxiv. 2024-3-21

引用本文的文献

[1]
AI Agents in Clinical Medicine: A Systematic Review.

medRxiv. 2025-8-26

[2]
Artificial intelligence in echocardiography: current applications and future perspectives.

J Echocardiogr. 2025-8-21

[3]
Use of a Medical Communication Framework to Assess the Quality of Generative Artificial Intelligence Replies to Primary Care Patient Portal Messages: Content Analysis.

JMIR Form Res. 2025-7-31

[4]
DeepSeek-R1 outperforms Gemini 2.0 Pro, OpenAI o1, and o3-mini in bilingual complex ophthalmology reasoning.

Adv Ophthalmol Pract Res. 2025-5-9

[5]
Implementing Large Language Models in Health Care: Clinician-Focused Review With Interactive Guideline.

J Med Internet Res. 2025-7-11

[6]
Clinical Management of Wasp Stings Using Large Language Models: Cross-Sectional Evaluation Study.

J Med Internet Res. 2025-6-4

[7]
Large Language Models in Cancer Imaging: Applications and Future Perspectives.

J Clin Med. 2025-5-8

[8]
The Applications of Large Language Models in Mental Health: Scoping Review.

J Med Internet Res. 2025-5-5

[9]
Benchmark evaluation of DeepSeek large language models in clinical decision-making.

Nat Med. 2025-4-23

[10]
Closing the Automation Gap: Robust AI for Dual-Stain Cervical Cancer Screening Triage.

Res Sq. 2025-3-4

本文引用的文献

[1]
Medical large language models are susceptible to targeted misinformation attacks.

NPJ Digit Med. 2024-10-23

[2]
Detecting hallucinations in large language models using semantic entropy.

Nature. 2024-6

[3]
MedCPT: Contrastive Pre-trained Transformers with large-scale PubMed search logs for zero-shot biomedical information retrieval.

Bioinformatics. 2023-11-1

[4]
Large language models propagate race-based medicine.

NPJ Digit Med. 2023-10-20

[5]
Large language models in medicine.

Nat Med. 2023-8

[6]
Large language models encode clinical knowledge.

Nature. 2023-8

[7]
Health system-scale language models are all-purpose prediction engines.

Nature. 2023-7

[8]
BioGPT: generative pre-trained transformer for biomedical text generation and mining.

Brief Bioinform. 2022-11-19

[9]
Learning a Health Knowledge Graph from Electronic Medical Records.

Sci Rep. 2017-7-20

[10]
Systematic Poisoning Attacks on and Defenses for Machine Learning in Healthcare.

IEEE J Biomed Health Inform. 2014-7-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索