文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

源特征影响基于人工智能的骨科文本简化:对未来的建议。

Source Characteristics Influence AI-Enabled Orthopaedic Text Simplification: Recommendations for the Future.

作者信息

Andalib Saman, Solomon Sean S, Picton Bryce G, Spina Aidin C, Scolaro John A, Nelson Ariana M

机构信息

University of California, Irvine, School of Medicine, Irvine, California.

Department of Orthopaedic Surgery, University of California, Irvine, Medical Center, Orange, California.

出版信息

JB JS Open Access. 2025 Jan 8;10(1). doi: 10.2106/JBJS.OA.24.00007. eCollection 2025 Jan-Mar.


DOI:10.2106/JBJS.OA.24.00007
PMID:39781102
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11703440/
Abstract

BACKGROUND: This study assesses the effectiveness of large language models (LLMs) in simplifying complex language within orthopaedic patient education materials (PEMs) and identifies predictive factors for successful text transformation. METHODS: We transformed 48 orthopaedic PEMs using GPT-4, GPT-3.5, Claude 2, and Llama 2. The readability, quantified by the Flesch-Kincaid Reading Ease (FKRE) and Flesch-Kincaid Grade Level (FKGL) scores, was measured before and after transformation. Analysis included text characteristics such as syllable count, word length, and sentence length. Statistical and machine learning methods evaluated the correlations and predictive capacity of these features for transformation success. RESULTS: All LLMs improved FKRE and FKGL scores (p < 0.01). GPT-4 showed superior performance, transforming PEMs to a seventh-grade reading level (mean FKGL, 6.72 ± 0.99), with higher FKRE and lower FKGL than other models. GPT-3.5, Claude 2, and Llama 2 significantly shortened sentences and overall text length (p < 0.01). Importantly, correlation analysis revealed that transformation success varied substantially with the model used, depending on original text factors such as word length and sentence complexity. CONCLUSIONS: LLMs successfully simplify orthopaedic PEMs, with GPT-4 leading in readability improvement. This study highlights the importance of initial text characteristics in determining the effectiveness of LLM transformations, offering insights for optimizing orthopaedic health literacy initiatives using artificial intelligence (AI). CLINICAL RELEVANCE: This study provides critical insights into the ability of LLMs to simplify complex orthopaedic PEMs, enhancing their readability without compromising informational integrity. By identifying predictive factors for successful text transformation, this research supports the application of AI in improving health literacy, potentially leading to better patient comprehension and outcomes in orthopaedic care.

摘要

背景:本研究评估大语言模型(LLMs)在简化骨科患者教育材料(PEMs)中复杂语言方面的有效性,并确定成功进行文本转换的预测因素。 方法:我们使用GPT-4、GPT-3.5、Claude 2和Llama 2对48份骨科PEMs进行了转换。通过弗莱什-金凯德阅读简易度(FKRE)和弗莱什-金凯德年级水平(FKGL)分数对转换前后的可读性进行了测量。分析包括音节数、单词长度和句子长度等文本特征。统计和机器学习方法评估了这些特征与转换成功之间的相关性和预测能力。 结果:所有大语言模型均提高了FKRE和FKGL分数(p < 0.01)。GPT-4表现出卓越的性能,将PEMs转换至七年级阅读水平(平均FKGL,6.72 ± 0.99),其FKRE更高且FKGL低于其他模型。GPT-3.5、Claude 2和Llama 2显著缩短了句子和整体文本长度(p < 0.01)。重要的是,相关性分析显示,转换成功与否因所使用的模型而有很大差异,这取决于单词长度和句子复杂度等原始文本因素。 结论:大语言模型成功简化了骨科PEMs,其中GPT-4在提高可读性方面领先。本研究强调了初始文本特征在确定大语言模型转换有效性方面的重要性,为利用人工智能(AI)优化骨科健康素养举措提供了见解。 临床相关性:本研究为大语言模型简化复杂骨科PEMs的能力提供了关键见解,在不影响信息完整性的情况下提高了其可读性。通过确定成功进行文本转换的预测因素,本研究支持将AI应用于提高健康素养,这可能会改善骨科护理中患者的理解和治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd1/11703440/f01d869dadad/jbjsoa-10-e24.00007-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd1/11703440/6e5b8db31efb/jbjsoa-10-e24.00007-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd1/11703440/bf5fd1aed4e5/jbjsoa-10-e24.00007-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd1/11703440/357547fdc806/jbjsoa-10-e24.00007-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd1/11703440/768101cf818e/jbjsoa-10-e24.00007-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd1/11703440/2603da8af55b/jbjsoa-10-e24.00007-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd1/11703440/a2737de93cbc/jbjsoa-10-e24.00007-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd1/11703440/d88bba591b18/jbjsoa-10-e24.00007-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd1/11703440/827a1b94bb71/jbjsoa-10-e24.00007-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd1/11703440/5f56fbd8df77/jbjsoa-10-e24.00007-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd1/11703440/a41843be6e83/jbjsoa-10-e24.00007-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd1/11703440/f01d869dadad/jbjsoa-10-e24.00007-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd1/11703440/6e5b8db31efb/jbjsoa-10-e24.00007-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd1/11703440/bf5fd1aed4e5/jbjsoa-10-e24.00007-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd1/11703440/357547fdc806/jbjsoa-10-e24.00007-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd1/11703440/768101cf818e/jbjsoa-10-e24.00007-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd1/11703440/2603da8af55b/jbjsoa-10-e24.00007-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd1/11703440/a2737de93cbc/jbjsoa-10-e24.00007-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd1/11703440/d88bba591b18/jbjsoa-10-e24.00007-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd1/11703440/827a1b94bb71/jbjsoa-10-e24.00007-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd1/11703440/5f56fbd8df77/jbjsoa-10-e24.00007-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd1/11703440/a41843be6e83/jbjsoa-10-e24.00007-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd1/11703440/f01d869dadad/jbjsoa-10-e24.00007-g011.jpg

相似文献

[1]
Source Characteristics Influence AI-Enabled Orthopaedic Text Simplification: Recommendations for the Future.

JB JS Open Access. 2025-1-8

[2]
Evaluation of Generative Language Models in Personalizing Medical Information: Instrument Validation Study.

JMIR AI. 2024-8-13

[3]
Assessing the Application of Large Language Models in Generating Dermatologic Patient Education Materials According to Reading Level: Qualitative Study.

JMIR Dermatol. 2024-5-16

[4]
Assessing AI Simplification of Medical Texts: Readability and Content Fidelity.

Int J Med Inform. 2025-3

[5]
Large language models and bariatric surgery patient education: a comparative readability analysis of GPT-3.5, GPT-4, Bard, and online institutional resources.

Surg Endosc. 2024-5

[6]
Tailoring glaucoma education using large language models: Addressing health disparities in patient comprehension.

Medicine (Baltimore). 2025-1-10

[7]
Can Artificial Intelligence Improve the Readability of Patient Education Materials on Aortic Stenosis? A Pilot Study.

Cardiol Ther. 2024-3

[8]
Large Language Models for Simplified Interventional Radiology Reports: A Comparative Analysis.

Acad Radiol. 2025-2

[9]
A standardised method for improving patient education material readability for orthopaedic trauma patients.

Musculoskeletal Care. 2024-3

[10]
Improving Accessibility to Facial Plastic and Reconstructive Surgery Patient Resources Using Artificial Intelligence: A Pilot Study in Patient Education Materials.

Facial Plast Surg Aesthet Med. 2025-4-16

引用本文的文献

[1]
Using AI to Translate and Simplify Spanish Orthopedic Medical Text: Instrument Validation Study.

JMIR AI. 2025-3-21

[2]
The role of large language models in improving the readability of orthopaedic spine patient educational material.

J Orthop Surg Res. 2025-5-28

[3]
Tailoring glaucoma education using large language models: Addressing health disparities in patient comprehension.

Medicine (Baltimore). 2025-1-10

本文引用的文献

[1]
Evaluation of Generative Language Models in Personalizing Medical Information: Instrument Validation Study.

JMIR AI. 2024-8-13

[2]
Evaluation of information provided to patients by ChatGPT about chronic diseases in Spanish language.

Digit Health. 2024-1-2

[3]
Optimizing Ophthalmology Patient Education via ChatBot-Generated Materials: Readability Analysis of AI-Generated Patient Education Materials and The American Society of Ophthalmic Plastic and Reconstructive Surgery Patient Brochures.

Ophthalmic Plast Reconstr Surg.

[4]
ChatGPT Interactive Medical Simulations for Early Clinical Education: Case Study.

JMIR Med Educ. 2023-11-10

[5]
Evaluating the Readability and Quality of Online Patient Education Materials for Pediatric ACL Tears.

J Pediatr Orthop. 2023-10-1

[6]
Using Artificial Intelligence Chatbots as a Radiologic Decision-Making Tool for Liver Imaging: Do ChatGPT and Bard Communicate Information Consistent With the ACR Appropriateness Criteria?

J Am Coll Radiol. 2023-10

[7]
Readability of spine-related patient education materials: a standard method for improvement.

Eur Spine J. 2023-9

[8]
Assessing ChatGPT Responses to Common Patient Questions Regarding Total Hip Arthroplasty.

J Bone Joint Surg Am. 2023-10-4

[9]
Evaluating the Effectiveness of Artificial Intelligence-powered Large Language Models Application in Disseminating Appropriate and Readable Health Information in Urology.

J Urol. 2023-10

[10]
Use of ChatGPT, GPT-4, and Bard to Improve Readability of ChatGPT's Answers to Common Questions About Lung Cancer and Lung Cancer Screening.

AJR Am J Roentgenol. 2023-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索