Suppr超能文献

使用大语言模型定制青光眼教育:解决患者理解方面的健康差异问题。

Tailoring glaucoma education using large language models: Addressing health disparities in patient comprehension.

作者信息

Spina Aidin C, Fereydouni Pirooz, Tang Jordan N, Andalib Saman, Picton Bryce G, Fox Austin R

机构信息

School of Medicine, University of California, Irvine, Irvine, CA.

School of Medicine, Gavin Herbert Eye Institute at University of California, Irvine, Irvine, CA.

出版信息

Medicine (Baltimore). 2025 Jan 10;104(2):e41059. doi: 10.1097/MD.0000000000041059.

Abstract

This study evaluates the efficacy of GPT-4, a Large Language Model, in simplifying medical literature for enhancing patient comprehension in glaucoma care. GPT-4 was used to transform published abstracts from 3 glaucoma journals (n = 62) and patient education materials (Patient Educational Model [PEMs], n = 9) to a 5th-grade reading level. GPT-4 was also prompted to generate de novo educational outputs at 6 different education levels (5th Grade, 8th Grade, High School, Associate's, Bachelor's and Doctorate). Readability of both transformed and de novo materials was quantified using Flesch Kincaid Grade Level (FKGL) and Flesch Reading Ease (FKRE) Score. Latent semantic analysis (LSA) using cosine similarity was applied to assess content consistency in transformed materials. The transformation of abstracts resulted in FKGL decreasing by an average of 3.21 points (30%, P < .001) and FKRE increasing by 28.6 points (66%, P < .001). For PEMs, FKGL decreased by 2.38 points (28%, P = .0272) and FKRE increased by 12.14 points (19%, P = .0459). LSA revealed high semantic consistency, with an average cosine similarity of 0.861 across all abstracts and 0.937 for PEMs, signifying topical themes were quantitatively shown to be consistent. This study shows that GPT-4 effectively simplifies medical information about glaucoma, making it more accessible while maintaining textual content. The improved readability scores for both transformed materials and GPT-4 generated content demonstrate its usefulness in patient education across different educational levels.

摘要

本研究评估了大型语言模型GPT-4在简化医学文献以提高青光眼护理中患者理解能力方面的效果。GPT-4被用于将3种青光眼期刊发表的摘要(n = 62)和患者教育材料(患者教育模型[PEMs],n = 9)转换为五年级阅读水平。GPT-4还被要求生成6种不同教育水平(五年级、八年级、高中、副学士学位、学士学位和博士学位)的全新教育内容。使用弗莱施-金凯德年级水平(FKGL)和弗莱施阅读简易度(FKRE)得分对转换后的材料和全新生成的材料的可读性进行量化。应用基于余弦相似度的潜在语义分析(LSA)来评估转换后材料的内容一致性。摘要的转换使FKGL平均降低了3.21分(30%,P <.001),FKRE提高了28.6分(66%,P <.001)。对于PEMs,FKGL降低了2.38分(28%,P =.0272),FKRE提高了12.14分(19%,P =.0459)。LSA显示出高度的语义一致性,所有摘要的平均余弦相似度为0.861,PEMs为0.937,这表明主题在数量上是一致的。本研究表明,GPT-4有效地简化了有关青光眼的医学信息,使其更易于理解,同时保持了文本内容。转换后的材料和GPT-4生成的内容的可读性得分提高,证明了其在不同教育水平的患者教育中的有用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45d6/11729625/f93a62401b81/medi-104-e41059-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验