文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

The effect of transcutaneous auricular vagus nerve stimulation on cardiovascular function in subarachnoid hemorrhage patients: A randomized trial.

作者信息

Tan Gansheng, Huguenard Anna L, Donovan Kara M, Demarest Phillip, Liu Xiaoxuan, Li Ziwei, Adamek Markus, Lavine Kory, Vellimana Ananthv K, Kummer Terrance T, Osbun Joshua W, Zipfel Gregory J, Brunner Peter, Leuthardt Eric C

机构信息

Department of Neurosurgery, Washington University School of Medicine, Springfield, United States.

Department of Biomedical Engineering, Washington University in St. Louis, St Louis, United States.

出版信息

Elife. 2025 Jan 9;13:RP100088. doi: 10.7554/eLife.100088.


DOI:10.7554/eLife.100088
PMID:39786346
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11717364/
Abstract

BACKGROUND: Subarachnoid hemorrhage (SAH) is characterized by intense central inflammation, leading to substantial post-hemorrhagic complications such as vasospasm and delayed cerebral ischemia. Given the anti-inflammatory effect of transcutaneous auricular vagus nerve stimulation (taVNS) and its ability to promote brain plasticity, taVNS has emerged as a promising therapeutic option for SAH patients. However, the effects of taVNS on cardiovascular dynamics in critically ill patients, like those with SAH, have not yet been investigated. Given the association between cardiac complications and elevated risk of poor clinical outcomes after SAH, it is essential to characterize the cardiovascular effects of taVNS to ensure this approach is safe in this fragile population. Therefore, this study assessed the impact of both acute and repetitive taVNS on cardiovascular function. METHODS: In this randomized clinical trial, 24 SAH patients were assigned to either a taVNS treatment or a sham treatment group. During their stay in the intensive care unit, we monitored patient electrocardiogram readings and vital signs. We compared long-term changes in heart rate, heart rate variability (HRV), QT interval, and blood pressure between the two groups. Additionally, we assessed the effects of acute taVNS by comparing cardiovascular metrics before, during, and after the intervention. We also explored acute cardiovascular biomarkers in patients exhibiting clinical improvement. RESULTS: We found that repetitive taVNS did not significantly alter heart rate, QT interval, blood pressure, or intracranial pressure (ICP). However, repetitive taVNS increased overall HRV and parasympathetic activity compared to the sham treatment. The increase in parasympathetic activity was most pronounced from 2 to 4 days after initial treatment (Cohen's = 0.50). Acutely, taVNS increased heart rate, blood pressure, and peripheral perfusion index without affecting the corrected QT interval, ICP, or HRV. The acute post-treatment elevation in heart rate was more pronounced in patients who experienced a decrease of more than one point in their modified Rankin Score at the time of discharge. CONCLUSIONS: Our study found that taVNS treatment did not induce adverse cardiovascular effects, such as bradycardia or QT prolongation, supporting its development as a safe immunomodulatory treatment approach for SAH patients. The observed acute increase in heart rate after taVNS treatment may serve as a biomarker for SAH patients who could derive greater benefit from this treatment. FUNDING: The American Association of Neurological Surgeons (ALH), The Aneurysm and AVM Foundation (ALH), The National Institutes of Health R01-EB026439, P41-EB018783, U24-NS109103, R21-NS128307 (ECL, PB), McDonnell Center for Systems Neuroscience (ECL, PB), and Fondazione Neurone (PB). CLINICAL TRIAL NUMBER: NCT04557618.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11717364/ae67d6a68483/elife-100088-sa3-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11717364/02877b168e62/elife-100088-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11717364/ac4194250906/elife-100088-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11717364/77bbe859ac30/elife-100088-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11717364/53b607569200/elife-100088-fig2-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11717364/c170ba8b7a3b/elife-100088-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11717364/454de7b688ff/elife-100088-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11717364/c262ef90a88d/elife-100088-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11717364/16ebc269ac24/elife-100088-fig3-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11717364/ede622ded1ae/elife-100088-fig3-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11717364/1e810e90ae34/elife-100088-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11717364/6a064236eee6/elife-100088-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11717364/dd7159a27eec/elife-100088-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11717364/1895c2354a69/elife-100088-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11717364/6554bf58a761/elife-100088-fig5-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11717364/6b5454df5a0b/elife-100088-fig5-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11717364/ae67d6a68483/elife-100088-sa3-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11717364/02877b168e62/elife-100088-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11717364/ac4194250906/elife-100088-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11717364/77bbe859ac30/elife-100088-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11717364/53b607569200/elife-100088-fig2-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11717364/c170ba8b7a3b/elife-100088-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11717364/454de7b688ff/elife-100088-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11717364/c262ef90a88d/elife-100088-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11717364/16ebc269ac24/elife-100088-fig3-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11717364/ede622ded1ae/elife-100088-fig3-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11717364/1e810e90ae34/elife-100088-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11717364/6a064236eee6/elife-100088-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11717364/dd7159a27eec/elife-100088-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11717364/1895c2354a69/elife-100088-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11717364/6554bf58a761/elife-100088-fig5-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11717364/6b5454df5a0b/elife-100088-fig5-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11717364/ae67d6a68483/elife-100088-sa3-fig1.jpg

相似文献

[1]
The effect of transcutaneous auricular vagus nerve stimulation on cardiovascular function in subarachnoid hemorrhage patients: A randomized trial.

Elife. 2025-1-9

[2]
The effect of transcutaneous auricular vagus nerve stimulation on cardiovascular function in subarachnoid hemorrhage patients: a safety study.

medRxiv. 2024-9-8

[3]
Non-invasive Auricular Vagus nerve stimulation for Subarachnoid Hemorrhage (NAVSaH): Protocol for a prospective, triple-blinded, randomized controlled trial.

PLoS One. 2024

[4]
Non-invasive Auricular Vagus nerve stimulation for Subarachnoid Hemorrhage (NAVSaH): Protocol for a prospective, triple-blinded, randomized controlled trial.

medRxiv. 2024-3-19

[5]
Ear your heart: transcutaneous auricular vagus nerve stimulation on heart rate variability in healthy young participants.

PeerJ. 2022

[6]
Effects of transcutaneous auricular vagus nerve stimulation at left cymba concha on experimental pain as assessed with the nociceptive withdrawal reflex, and correlation with parasympathetic activity.

Eur J Neurosci. 2024-5

[7]
Non-Invasive Auricular Vagus Nerve Stimulation Decreases Heart Rate Variability Independent of Caloric Load.

Psychophysiology. 2025-2

[8]
The efficacy and safety of transcutaneous auricular vagus nerve stimulation in patients with mild cognitive impairment: A double blinded randomized clinical trial.

Brain Stimul. 2022

[9]
The combined effect of transcutaneous electrical nerve stimulation and transcutaneous auricular vagus nerve stimulation on pressure and heat pain thresholds in pain-free subjects: a randomized cross-over trial.

Trials. 2024-7-31

[10]
Neuro-cardiac coupling predicts transcutaneous auricular vagus nerve stimulation effects.

Brain Stimul. 2021

引用本文的文献

[1]
Transcutaneous Auricular Vagus Nerve Stimulation Reduces Inflammatory Biomarkers and May Improve Outcomes after Large Vessel Occlusion Strokes: Results of the Randomized Clinical Trial NUVISTA.

medRxiv. 2025-3-7

[2]
Auricular vagus nerve stimulation for mitigation of inflammation and vasospasm in subarachnoid hemorrhage: a single-institution randomized controlled trial.

J Neurosurg. 2025-1-24

本文引用的文献

[1]
Auricular vagus nerve stimulation for mitigation of inflammation and vasospasm in subarachnoid hemorrhage: a single-institution randomized controlled trial.

J Neurosurg. 2025-1-24

[2]
Non-invasive Auricular Vagus nerve stimulation for Subarachnoid Hemorrhage (NAVSaH): Protocol for a prospective, triple-blinded, randomized controlled trial.

PLoS One. 2024

[3]
Does vibrotactile stimulation of the auricular vagus nerve enhance working memory? A behavioral and physiological investigation.

Brain Stimul. 2024

[4]
Tonic and phasic transcutaneous auricular vagus nerve stimulation (taVNS) both evoke rapid and transient pupil dilation.

Brain Stimul. 2024

[5]
Vagus nerve stimulation as immunomodulatory therapy for stroke: A comprehensive review.

Exp Neurol. 2024-2

[6]
The Clinical Characteristics of Heart Rate Variability After Stroke: A Systematic Review.

Neurologist. 2024-3-1

[7]
Transcutaneous auricular vagus nerve stimulation attenuates inflammatory bowel disease in children: a proof-of-concept clinical trial.

Bioelectron Med. 2023-10-18

[8]
The electrical restitution of the non-propagated cardiac ventricular action potential.

Pflugers Arch. 2024-1

[9]
Cardiovascular effects of auricular stimulation -a systematic review and meta-analysis of randomized controlled clinical trials.

Front Neurosci. 2023-9-1

[10]
Clinical Potential of Immunotherapies in Subarachnoid Hemorrhage Treatment: Mechanistic Dissection of Innate and Adaptive Immune Responses.

Aging Dis. 2023-10-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索