Lim Kang Rui Garrick, Kaiser Selina K, Herring Connor J, Kim Taek-Seung, Perich Marta Perxés, Garg Sadhya, O'Connor Christopher R, Aizenberg Michael, van der Hoeven Jessi E S, Reece Christian, Montemore Matthew M, Aizenberg Joanna
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138.
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138.
Proc Natl Acad Sci U S A. 2025 Jan 14;122(2):e2422628122. doi: 10.1073/pnas.2422628122. Epub 2025 Jan 9.
Despite the broad catalytic relevance of metal-support interfaces, controlling their chemical nature, the interfacial contact perimeter (exposed to reactants), and consequently, their contributions to overall catalytic reactivity, remains challenging, as the nanoparticle and support characteristics are interdependent when catalysts are prepared by impregnation. Here, we decoupled both characteristics by using a raspberry-colloid-templating strategy that yields partially embedded PdAu nanoparticles within well-defined SiO or TiO supports, thereby increasing the metal-support interfacial contact compared to nonembedded catalysts that we prepared by attaching the same nanoparticles onto support surfaces. Between nonembedded PdAu/SiO and PdAu/TiO, we identified a support effect resulting in a 1.4-fold higher activity of PdAu/TiO than PdAu/SiO for benzaldehyde hydrogenation. Notably, partial nanoparticle embedding in the TiO raspberry-colloid-templated support increased the metal-support interfacial perimeter and consequently, the number of Au/TiO interfacial sites by 5.4-fold, which further enhanced the activity of PdAu/TiO by an additional 4.1-fold. Theoretical calculations and in situ surface-sensitive desorption analyses reveal facile benzaldehyde binding at the Au/TiO interface and at Pd ensembles on the nanoparticle surface, explaining the connection between the number of Au/TiO interfacial sites (via the metal-support interfacial perimeter) and catalytic activity. Our results demonstrate partial nanoparticle embedding as a synthetic strategy to produce thermocatalytically stable catalysts and increase the number of catalytically active Au/TiO interfacial sites to augment catalytic contributions arising from metal-support interfaces.
尽管金属-载体界面具有广泛的催化相关性,但控制其化学性质、界面接触周长(暴露于反应物)以及因此对整体催化反应性的贡献仍然具有挑战性,因为在通过浸渍法制备催化剂时,纳米颗粒和载体的特性是相互依存的。在此,我们采用一种覆盆子胶体模板策略将这两种特性解耦,该策略可在明确的SiO或TiO载体中生成部分嵌入的PdAu纳米颗粒,从而与我们通过将相同纳米颗粒附着在载体表面制备的非嵌入催化剂相比,增加了金属-载体的界面接触。在非嵌入的PdAu/SiO和PdAu/TiO之间,我们发现了一种载体效应,导致PdAu/TiO对苯甲醛加氢的活性比PdAu/SiO高1.4倍。值得注意的是,在TiO覆盆子胶体模板化载体中部分纳米颗粒嵌入增加了金属-载体的界面周长,因此Au/TiO界面位点的数量增加了5.4倍,这进一步使PdAu/TiO的活性提高了4.1倍。理论计算和原位表面敏感脱附分析表明,苯甲醛在Au/TiO界面和纳米颗粒表面的Pd团簇上易于结合,这解释了Au/TiO界面位点数量(通过金属-载体界面周长)与催化活性之间的联系。我们的结果表明,部分纳米颗粒嵌入是一种合成策略,可制备热催化稳定的催化剂,并增加催化活性Au/TiO界面位点的数量,以增强金属-载体界面产生的催化贡献。