Suppr超能文献

通过几何图学习提高语言模型预测结构作为对接靶点的可靠性。

Improving the Reliability of Language Model-Predicted Structures as Docking Targets through Geometric Graph Learning.

作者信息

Shen Chao, Han Xiaoqi, Cai Heng, Chen Tong, Kang Yu, Pan Peichen, Ji Xiangyang, Hsieh Chang-Yu, Deng Yafeng, Hou Tingjun

机构信息

Hangzhou Carbonsilicon AI Technology Company Limited, Hangzhou 310018, Zhejiang, China.

College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.

出版信息

J Med Chem. 2025 Jan 23;68(2):1956-1969. doi: 10.1021/acs.jmedchem.4c02740. Epub 2025 Jan 9.

Abstract

Applying artificial intelligence techniques to flexibly model the binding between the ligand and protein has attracted extensive interest in recent years, but their applicability remains improved. In this study, we have developed CarsiDock-Flex, a novel two-step flexible docking paradigm that generates binding poses directly from predicted structures. CarsiDock-Flex consists of an equivariant deep learning-based model termed CarsiInduce to refine ESMFold-predicted protein pockets with the induction of specific ligands and our existing CarsiDock algorithm to redock the ligand into the induced binding pockets. Extensive evaluations demonstrate the effectiveness of CarsiInduce, which can successfully guide the transition of ESMFold-predicted pockets into their -like conformations for numerous cases, thus leading to the superior docking accuracy of CarsiDock-Flex even on unseen sequences. Overall, our approach offers a novel design for flexible modeling of protein-ligand binding poses, paving the way for a deeper understanding of protein-ligand interactions that account for protein flexibility.

摘要

近年来,应用人工智能技术灵活地模拟配体与蛋白质之间的结合引起了广泛关注,但其适用性仍有待提高。在本研究中,我们开发了CarsiDock-Flex,这是一种新颖的两步灵活对接范式,可直接从预测结构生成结合姿势。CarsiDock-Flex由一个基于等变深度学习的模型CarsiInduce组成,该模型通过特定配体的诱导来优化ESMFold预测的蛋白质口袋,以及我们现有的CarsiDock算法,用于将配体重新对接至诱导的结合口袋中。广泛的评估证明了CarsiInduce的有效性,在许多情况下,它可以成功地引导ESMFold预测的口袋转变为类似天然的构象,从而使CarsiDock-Flex即使在未见序列上也具有卓越的对接准确性。总体而言,我们的方法为蛋白质-配体结合姿势的灵活建模提供了一种新颖的设计,为更深入地理解考虑蛋白质灵活性的蛋白质-配体相互作用铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验