Suppr超能文献

基于眼底图像的糖尿病视网膜病变分期的深度学习泛化

Deep learning generalization for diabetic retinopathy staging from fundus images.

作者信息

Men Yevgeniy, Fhima Jonathan, Celi Leo Anthony, Ribeiro Lucas Zago, Nakayama Luis Filipe, Behar Joachim A

机构信息

Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering, Technion, Israel Institute of Technology, Haifa 3200003, Israel.

Faculty of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa 3200003, Israel.

出版信息

Physiol Meas. 2025 Jan 22;13(1). doi: 10.1088/1361-6579/ada86a.

Abstract

. Diabetic retinopathy (DR) is a serious diabetes complication that can lead to vision loss, making timely identification crucial. Existing data-driven algorithms for DR staging from digital fundus images (DFIs) often struggle with generalization due to distribution shifts between training and target domains.. To address this, DRStageNet, a deep learning model, was developed using six public and independent datasets with 91 984 DFIs from diverse demographics. Five pretrained self-supervised vision transformers (ViTs) were benchmarked, with the best further trained using a multi-source domain (MSD) fine-tuning strategy.. DINOv2 showed a 27.4% improvement in L-Kappa versus other pretrained ViT. MSD fine-tuning improved performance in four of five target domains. The error analysis revealing 60% of errors due to incorrect labels, 77.5% of which were correctly classified by DRStageNet.. We developed DRStageNet, a DL model for DR, designed to accurately stage the condition while addressing the challenge of generalizing performance across target domains. The model and explainability heatmaps are available atwww.aimlab-technion.com/lirot-ai.

摘要

糖尿病视网膜病变(DR)是一种严重的糖尿病并发症,可导致视力丧失,因此及时识别至关重要。现有的基于数据驱动的从数字眼底图像(DFI)进行DR分期的算法,由于训练域和目标域之间的分布差异,往往难以实现泛化。为了解决这个问题,开发了深度学习模型DRStageNet,它使用了六个公共独立数据集,包含来自不同人群的91984张DFI。对五个预训练的自监督视觉Transformer(ViT)进行了基准测试,其中表现最佳的使用多源域(MSD)微调策略进行进一步训练。与其他预训练的ViT相比,DINOv2的L-Kappa提高了27.4%。MSD微调在五个目标域中的四个域中提高了性能。误差分析表明,60%的误差是由于标签错误导致的,其中77.5%被DRStageNet正确分类。我们开发了DRStageNet,这是一种用于DR的深度学习模型,旨在准确对病情进行分期,同时应对跨目标域泛化性能的挑战。该模型和可解释性热图可在www.aimlab-technion.com/lirot-ai上获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验