Suppr超能文献

利用体内共聚焦显微镜和自监督人工智能模型表征无虹膜相关角膜病变中的角膜变化。

Characterising corneal changes in aniridia-related keratopathy using in vivo confocal microscopy and a self-supervised AI model.

作者信息

Kaye Abigail Eve, Zheng Yalin, Ahmad Sajjad

机构信息

University College London, London, UK.

Moorfields Eye Hospital NHS Foundation Trust, London, UK.

出版信息

BMJ Open Ophthalmol. 2025 Jul 16;10(1):e002300. doi: 10.1136/bmjophth-2025-002300.

Abstract

PURPOSE

To investigate whether corneal changes observed via in vivo confocal microscopy (IVCM) in patients with aniridia-related keratopathy (ARK) reflect clinical severity.

METHODS

A cross-sectional, observational study. Patients with congenital aniridia and healthy controls were included. IVCM of the epithelium, anterior stroma and posterior stroma were collected, manually annotated and analysed using the pretrained DINOv2 model as a feature extractor. High-dimensional embeddings were visualised using t-distributed stochastic neighbour embedding (t-SNE) to assess layer-specific clustering. Structural deviations from normal controls were quantified using centroid and Euclidean distance metrics. The cumulative structural changes across corneal layers were then correlated with Ocular Surface Score (OSS), a clinical grading scale for ARK severity.

RESULTS

20 patients with congenital aniridia and six healthy controls were included. t-SNE analysis revealed distinct clusters for normal corneal layers; whereas, ARK samples displayed overlapping clusters, suggestive of blurred structural boundaries. Notably, significant clustering patterns were observed in the anterior stroma, even in cases with mild ARK, underscoring its potential as an early disease marker. Anterior stromal changes were significantly associated with OSS scores (p<0.05), while cumulative structural deviations across all layers demonstrated a stronger correlation with disease severity (p<0.01). The posterior stroma showed relative structural preservation, aligning closely with healthy controls.

CONCLUSION

DINOv2 is a useful tool for identifying subtle structural changes in corneal layers affected by ARK. The corneal stromal features characterised using IVCM showed strong associations with clinical disease and may serve as structural biomarkers of clinical disease.

摘要

目的

研究在无虹膜相关性角膜病变(ARK)患者中通过活体共聚焦显微镜(IVCM)观察到的角膜变化是否反映临床严重程度。

方法

一项横断面观察性研究。纳入先天性无虹膜患者和健康对照。收集上皮、前基质和后基质的IVCM图像,手动标注并使用预训练的DINOv2模型作为特征提取器进行分析。使用t分布随机邻域嵌入(t-SNE)对高维嵌入进行可视化,以评估层特异性聚类。使用质心和欧几里得距离度量对与正常对照的结构偏差进行量化。然后将角膜各层的累积结构变化与眼表评分(OSS)相关联,OSS是ARK严重程度的临床分级量表。

结果

纳入20例先天性无虹膜患者和6例健康对照。t-SNE分析显示正常角膜层有明显的聚类;而ARK样本显示聚类重叠,提示结构边界模糊。值得注意的是,即使在轻度ARK病例中,在前基质中也观察到显著的聚类模式,突出了其作为早期疾病标志物的潜力。前基质变化与OSS评分显著相关(p<0.05),而所有层的累积结构偏差与疾病严重程度的相关性更强(p<0.01)。后基质显示相对结构保存,与健康对照密切一致。

结论

DINOv2是识别受ARK影响的角膜层细微结构变化的有用工具。使用IVCM表征的角膜基质特征与临床疾病显示出强烈关联,可作为临床疾病的结构生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fa8/12273092/b366f549b768/bmjophth-10-1-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验