Suppr超能文献

利用加拿大曼尼托巴省基于人群的关联行政健康数据识别新冠后状况患者:新冠阳性个体队列中的患病率及预测因素

Identifying people with post-COVID condition using linked, population-based administrative health data from Manitoba, Canada: prevalence and predictors in a cohort of COVID-positive individuals.

作者信息

Katz Alan, Ekuma Okechukwu, Enns Jennifer E, Cavett Teresa, Singer Alexander, Sanchez-Ramirez Diana C, Keynan Yoav, Lix Lisa, Walld Randy, Yogendran Marina, Nickel Nathan C, Urquia Marcelo, Star Leona, Olafson Kendiss, Logsetty Sarvesh, Spiwak Rae, Waruk Jillian, Matharaarachichi Surani

机构信息

Manitoba Centre for Health Policy, Department of Community Health Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada

Department of Family Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.

出版信息

BMJ Open. 2025 Jan 9;15(1):e087920. doi: 10.1136/bmjopen-2024-087920.

Abstract

OBJECTIVE

Many individuals exposed to SARS-CoV-2 experience long-term symptoms as part of a syndrome called post-COVID condition (PCC). Research on PCC is still emerging but is urgently needed to support diagnosis, clinical treatment guidelines and health system resource allocation. In this study, we developed a method to identify PCC cases using administrative health data and report PCC prevalence and predictive factors in Manitoba, Canada.

DESIGN

Cohort study.

SETTING

Manitoba, Canada.

PARTICIPANTS

All Manitobans who tested positive for SARS-CoV-2 during population-wide PCR testing from March 2020 to December 2021 (n=66 365) and were subsequently deemed to have PCC based on International Classification of Disease-9/10 diagnostic codes and prescription drug codes (n=11 316). Additional PCC cases were identified using predictive modelling to assess patterns of health service use, including physician visits, emergency department visits and hospitalisation for any reason (n=4155).

OUTCOMES

We measured PCC prevalence as % PCC cases among Manitobans with positive tests and identified predictive factors associated with PCC by calculating odds ratios with 95% confidence intervals, adjusted for sociodemographic and clinical characteristics (aOR).

RESULTS

Among 66 365 Manitobans with positive tests, we identified 15 471 (23%) as having PCC. Being female (aOR 1.64, 95% CI 1.58 to 1.71), being age 60-79 (aOR 1.33, 95% CI 1.25 to 1.41) or age 80+ (aOR 1.62, 95% CI 1.46 to 1.80), being hospitalised within 14 days of COVID-19 infection (aOR 1.95, 95% CI 1.80 to 2.10) and having a Charlson Comorbidity Index of 1+ (aOR 1.95, 95% CI 1.78 to 2.14) were predictive of PCC. Receiving 1+ doses of the COVID-19 vaccine (one dose, aOR 0.80, 95% CI 0.74 to 0.86; two doses, aOR 0.29, 95% CI 0.22 to 0.31) decreased the odds of PCC.

CONCLUSIONS

This data-driven approach expands our understanding of the prevalence and epidemiology of PCC and may be applied in other jurisdictions with population-based data. The study provides additional insights into risk and protective factors for PCC to inform health system planning and service delivery.

摘要

目的

许多感染严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的人会出现长期症状,这是一种称为新冠后遗症(PCC)综合征的一部分。对PCC的研究仍在不断涌现,但迫切需要其来支持诊断、临床治疗指南和卫生系统资源分配。在本研究中,我们开发了一种利用行政卫生数据识别PCC病例的方法,并报告了加拿大曼尼托巴省的PCC患病率及预测因素。

设计

队列研究。

地点

加拿大曼尼托巴省。

参与者

2020年3月至2021年12月在全人群聚合酶链反应检测中SARS-CoV-2检测呈阳性的所有曼尼托巴人(n=66365),随后根据国际疾病分类第9/10版诊断代码和处方药代码被判定为患有PCC的人(n=11316)。使用预测模型识别额外的PCC病例,以评估卫生服务使用模式,包括因任何原因的就诊、急诊就诊和住院情况(n=4155)。

结果

我们将PCC患病率衡量为检测呈阳性的曼尼托巴人中PCC病例的百分比,并通过计算优势比及95%置信区间,在对社会人口学和临床特征进行调整后(aOR),确定与PCC相关的预测因素。

结果

在66365名检测呈阳性的曼尼托巴人中,我们确定15471人(23%)患有PCC。女性(aOR 1.64,95%CI 1.58至1.71)、年龄在60 - 79岁(aOR 1.33,95%CI 1.25至1.41)或80岁及以上(aOR 1.62,95%CI 1.46至1.80)、在新冠病毒感染后14天内住院(aOR 1.95,95%CI 1.80至2.10)以及Charlson合并症指数为1+(aOR 1.95,95%CI 1.78至2.14)是PCC的预测因素。接种1剂及以上新冠疫苗(1剂,aOR 0.80,95%CI 0.74至0.86;2剂,aOR 0.29,95%CI 0.22至0.31)会降低患PCC的几率。

结论

这种数据驱动的方法扩展了我们对PCC患病率和流行病学的理解,并且可应用于其他拥有基于人群数据的司法管辖区。该研究为PCC的风险和保护因素提供了更多见解,以为卫生系统规划和服务提供提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cefc/11751946/ea7d973f1ae4/bmjopen-15-1-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验