Yin Christina Y, Talarico Robert, Scott Mary M, Hakimjavadi Ramtin, Kierulf Jackie, Webber Colleen, Hawken Steven, Moledina Aliza, Manuel Douglas G, Hsu Amy, Tanuseputro Peter, Fung Celeste, Kaasalainen Sharon, Molnar Frank, Shamon Sandy, Ronksley Paul E, McIsaac Daniel I, Kobewka Daniel
Bruyere Research Institute, Ottawa, Ontario, Canada.
Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
BMJ Open. 2025 Jan 9;15(1):e086935. doi: 10.1136/bmjopen-2024-086935.
Long-term care (LTC) residents require extensive assistance with daily activities due to physical and cognitive impairments. Medical treatment for LTC residents, when not aligned with residents' wishes, can cause discomfort without providing substantial benefits. Predictive models can equip providers with tools to guide treatment recommendations that support person-centred medical decision-making. This study protocol describes the derivation and validation of time-to-event predictive models for (1) permanent loss of independence in physical function, (2) permanent severe cognitive impairment and (3) time alive with complete dependence for those with disability starting from the date of onset.
We will use population-based administrative health data from the Institute for Clinical Evaluative Sciences of all LTC residents in Ontario, Canada, to construct the derivation and internal validation cohorts. The external validation cohort will use data from LTC residents in Alberta, Canada. Predictors were identified based on existing literature, patient advisors and expert opinions (clinical and analytical). We identified 50 variables to predict the loss of independence in physical function, 58 variables to predict the loss of independence in cognitive function and 36 variables to predict the time spent in a state of dependence. We will use time-to-event models to predict the time to loss of independence and time spent in the state of disability. Full and reduced models (using a step-down procedure) will be developed for each outcome. Predictive performance will be assessed in both derivation and validation cohorts using overall measures of predictive accuracy, discrimination and calibration. We will create risk groups to present model risk estimates to users as median time-to-event. Risk groups will be externally validated within the Alberta LTC cohort.
Ethics approval was obtained through the Bruyère Research Institute Ethics Committee. Study findings will be submitted for publication and disseminated at conferences. The predictive algorithm will be available to the general public.
长期护理(LTC)居民由于身体和认知障碍,在日常生活活动中需要大量帮助。当针对LTC居民的医疗治疗与居民意愿不一致时,可能会在没有带来实质性益处的情况下造成不适。预测模型可以为医疗服务提供者提供工具,以指导支持以患者为中心的医疗决策的治疗建议。本研究方案描述了事件发生时间预测模型的推导和验证,该模型用于预测(1)身体功能永久性丧失独立能力、(2)永久性严重认知障碍以及(3)从发病日期开始完全依赖他人生活的存活时间。
我们将使用加拿大安大略省临床评价科学研究所基于人群的行政健康数据,构建推导队列和内部验证队列。外部验证队列将使用加拿大艾伯塔省LTC居民的数据。根据现有文献、患者顾问和专家意见(临床和分析)确定预测因素。我们确定了50个变量来预测身体功能丧失独立能力,58个变量来预测认知功能丧失独立能力,36个变量来预测处于依赖状态的时间。我们将使用事件发生时间模型来预测丧失独立能力的时间和处于残疾状态的时间。将为每个结局开发完整模型和简化模型(使用逐步回归程序)。将在推导队列和验证队列中使用预测准确性、区分度和校准的总体指标来评估预测性能。我们将创建风险组,以事件发生时间中位数的形式向用户呈现模型风险估计值。风险组将在艾伯塔省LTC队列中进行外部验证。
已通过布鲁耶尔研究所伦理委员会获得伦理批准。研究结果将提交发表并在会议上传播。预测算法将向公众公开。