Suppr超能文献

利用人工智能和机器学习对脑鞍区囊性病变进行鉴别以实现早期诊断:新型诊断方式的前瞻性综述

Differentiating Cystic Lesions in the Sellar Region of the Brain Using Artificial Intelligence and Machine Learning for Early Diagnosis: A Prospective Review of the Novel Diagnostic Modalities.

作者信息

Patel Kaivan, Sanghvi Harshal, Gill Gurnoor S, Agarwal Ojas, Pandya Abhijit S, Agarwal Ankur, Gupta Manish

机构信息

Department of Internal Medicine, Broward Health North, Deerfield Beach, USA.

Department of Technology and Clinical Trials, Advanced Research, Deerfield Beach, USA.

出版信息

Cureus. 2024 Dec 10;16(12):e75476. doi: 10.7759/cureus.75476. eCollection 2024 Dec.

Abstract

This paper investigates the potential of artificial intelligence (AI) and machine learning (ML) to enhance the differentiation of cystic lesions in the sellar region, such as pituitary adenomas, Rathke cleft cysts (RCCs) and craniopharyngiomas (CP), through the use of advanced neuroimaging techniques, particularly magnetic resonance imaging (MRI). The goal is to explore how AI-driven models, including convolutional neural networks (CNNs), deep learning, and ensemble methods, can overcome the limitations of traditional diagnostic approaches, providing more accurate and early differentiation of these lesions. The review incorporates findings from critical studies, such as using the Open Access Series of Imaging Studies (OASIS) dataset (Kaggle, San Francisco, USA) for MRI-based brain research, highlighting the significance of statistical rigor and automated segmentation in developing reliable AI models. By drawing on these insights and addressing the challenges posed by small, single-institutional datasets, the paper aims to demonstrate how AI applications can improve diagnostic precision, enhance clinical decision-making, and ultimately lead to better patient outcomes in managing sellar region cystic lesions.

摘要

本文研究了人工智能(AI)和机器学习(ML)通过使用先进的神经成像技术,特别是磁共振成像(MRI),来增强蝶鞍区囊性病变(如垂体腺瘤、拉克氏囊肿(RCC)和颅咽管瘤(CP))鉴别诊断的潜力。目标是探索包括卷积神经网络(CNN)、深度学习和集成方法在内的人工智能驱动模型如何克服传统诊断方法的局限性,对这些病变进行更准确和早期的鉴别。该综述纳入了关键研究的结果,如使用开放获取影像研究系列(OASIS)数据集(美国旧金山的Kaggle)进行基于MRI的脑研究,强调了统计严谨性和自动分割在开发可靠人工智能模型中的重要性。通过借鉴这些见解并应对小型单机构数据集带来的挑战,本文旨在展示人工智能应用如何提高诊断精度、加强临床决策,并最终在蝶鞍区囊性病变的管理中为患者带来更好的治疗结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6725/11717160/c869caaeea60/cureus-0016-00000075476-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验