Suppr超能文献

通过并行进化策略实现多功能纳米表面的快速人工智能驱动逆向设计

Enabling Fast AI-Driven Inverse Design of a Multifunctional Nanosurface by Parallel Evolution Strategies.

作者信息

Chapagain Ashish, Abuoliem Dima, Cho In Ho

机构信息

Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, IA 50011, USA.

出版信息

Nanomaterials (Basel). 2024 Dec 27;15(1):27. doi: 10.3390/nano15010027.

Abstract

Multifunctional nanosurfaces receive growing attention due to their versatile properties. Capillary force lithography (CFL) has emerged as a simple and economical method for fabricating these surfaces. In recent works, the authors proposed to leverage the evolution strategies (ES) to modify nanosurface characteristics with CFL to achieve specific functionalities such as frictional, optical, and bactericidal properties. For artificial intelligence (AI)-driven inverse design, earlier research integrates basic multiphysics principles such as dynamic viscosity, air diffusivity, surface tension, and electric potential with backward deep learning (DL) on the framework of ES. As a successful alternative to reinforcement learning, ES performed well for the AI-driven inverse design. However, the computational limitations of ES pose a critical technical challenge to achieving fast and efficient design. This paper addresses the challenges by proposing a parallel-computing-based ES (named parallel ES). The parallel ES demonstrated the desired speed and scalability, accelerating the AI-driven inverse design of multifunctional nanopatterned surfaces. Detailed parallel ES algorithms and cost models are presented, showing its potential as a promising tool for advancing AI-driven nanomanufacturing.

摘要

多功能纳米表面因其多样的特性而受到越来越多的关注。毛细管力光刻(CFL)已成为制造这些表面的一种简单且经济的方法。在最近的研究中,作者提出利用进化策略(ES)通过CFL来改变纳米表面特性,以实现诸如摩擦、光学和杀菌等特定功能。对于人工智能(AI)驱动的逆向设计,早期研究在ES框架下将动态粘度、空气扩散率、表面张力和电势等基本多物理场原理与反向深度学习(DL)相结合。作为强化学习的一种成功替代方法,ES在AI驱动的逆向设计中表现出色。然而,ES的计算局限性对实现快速高效的设计构成了关键的技术挑战。本文通过提出一种基于并行计算的ES(称为并行ES)来应对这些挑战。并行ES展现出了所需的速度和可扩展性,加速了多功能纳米图案表面的AI驱动逆向设计。文中给出了详细的并行ES算法和成本模型,显示出其作为推进AI驱动纳米制造的有前景工具的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d12/11722515/b200ea5f359b/nanomaterials-15-00027-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验