Suppr超能文献

用于定制应用的纳米润滑剂设计的机器学习方法

Machine Learning Approach for Application-Tailored Nanolubricants' Design.

作者信息

Kałużny Jarosław, Świetlicka Aleksandra, Wojciechowski Łukasz, Boncel Sławomir, Kinal Grzegorz, Runka Tomasz, Nowicki Marek, Stepanenko Oleksandr, Gapiński Bartosz, Leśniewicz Joanna, Błaszkiewicz Paulina, Kempa Krzysztof

机构信息

Institute of Combustion Engines and Powertrains, Poznan University of Technology, 60-965 Poznań, Poland.

Institute of Automatic Control and Robotics, Poznan University of Technology, 60-965 Poznań, Poland.

出版信息

Nanomaterials (Basel). 2022 May 22;12(10):1765. doi: 10.3390/nano12101765.

Abstract

The fascinating tribological phenomenon of carbon nanotubes (CNTs) observed at the nanoscale was confirmed in our numerous macroscale experiments. We designed and employed CNT-containing nanolubricants strictly for polymer lubrication. In this paper, we present the experiment characterising how the CNT structure determines its lubricity on various types of polymers. There is a complex correlation between the microscopic and spectral properties of CNTs and the tribological parameters of the resulting lubricants. This confirms indirectly that the nature of the tribological mechanisms driven by the variety of CNT-polymer interactions might be far more complex than ever described before. We propose plasmonic interactions as an extension for existing models describing the tribological roles of nanomaterials. In the absence of quantitative microscopic calculations of tribological parameters, phenomenological strategies must be employed. One of the most powerful emerging numerical methods is machine learning (ML). Here, we propose to use this technique, in combination with molecular and supramolecular recognition, to understand the morphology and macro-assembly processing strategies for the targeted design of superlubricants.

摘要

在我们众多的宏观实验中证实了在纳米尺度观察到的碳纳米管(CNT)迷人的摩擦学现象。我们严格为聚合物润滑设计并使用了含碳纳米管的纳米润滑剂。在本文中,我们展示了表征碳纳米管结构如何决定其在各种类型聚合物上润滑性的实验。碳纳米管的微观和光谱特性与所得润滑剂的摩擦学参数之间存在复杂的相关性。这间接证实了由各种碳纳米管 - 聚合物相互作用驱动的摩擦学机制的本质可能比以往描述的要复杂得多。我们提出等离子体相互作用作为描述纳米材料摩擦学作用的现有模型的扩展。在缺乏摩擦学参数的定量微观计算的情况下,必须采用唯象学策略。最强大的新兴数值方法之一是机器学习(ML)。在此,我们建议结合分子和超分子识别使用该技术,以了解用于超润滑剂靶向设计的形态和宏观组装加工策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a10c/9146785/cab12005e888/nanomaterials-12-01765-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验