Suppr超能文献

扫描电子显微镜中纳米尺度低剂量4D-STEM相衬技术的模拟研究

Simulation Study of Low-Dose 4D-STEM Phase Contrast Techniques at the Nanoscale in SEM.

作者信息

Jílek Zvonimír, Radlička Tomáš, Krzyžánek Vladislav

机构信息

Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 61200 Brno, Czech Republic.

出版信息

Nanomaterials (Basel). 2025 Jan 4;15(1):70. doi: 10.3390/nano15010070.

Abstract

Phase contrast imaging is well-suited for studying weakly scattering samples. Its strength lies in its ability to measure how the phase of the electron beam is affected by the sample, even when other imaging techniques yield low contrast. In this study, we explore via simulations two phase contrast techniques: integrated center of mass (iCOM) and ptychography, specifically using the extended ptychographical iterative engine (ePIE). We simulate the four-dimensional scanning transmission electron microscopy (4D-STEM) datasets for specific parameters corresponding to a scanning electron microscope (SEM) with an immersive objective and a given pixelated detector. The performance of these phase contrast techniques is analyzed using a contrast transfer function. Simulated datasets from a sample consisting of graphene sheets and carbon nanotubes are used for iCOM and ePIE reconstructions for two aperture sizes and two electron doses. We highlight the influence of aperture size, showing that for a smaller aperture, the radiation dose is spent mostly on larger sample features, which may aid in imaging sensitive samples while minimizing radiation damage.

摘要

相衬成像非常适合研究弱散射样品。其优势在于能够测量电子束的相位如何受到样品的影响,即使其他成像技术产生的对比度较低。在本研究中,我们通过模拟探索了两种相衬技术:质心积分(iCOM)和叠层成像术,具体使用扩展叠层成像迭代引擎(ePIE)。我们针对与具有沉浸式物镜和给定像素化探测器的扫描电子显微镜(SEM)相对应的特定参数,模拟了四维扫描透射电子显微镜(4D-STEM)数据集。使用对比度传递函数分析这些相衬技术的性能。由石墨烯片和碳纳米管组成的样品的模拟数据集用于两种孔径尺寸和两种电子剂量下的iCOM和ePIE重建。我们强调了孔径尺寸的影响,表明对于较小的孔径,辐射剂量主要用于较大的样品特征,这可能有助于对敏感样品进行成像,同时将辐射损伤降至最低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcbf/11722761/08812a9bc264/nanomaterials-15-00070-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验