de Souza Layse C, Herring Christopher D, Lynd Lee R
Centro de Engenharia Genética e Biologia Molecular (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil.
Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas Instituto de Biologia, Campinas, São Paulo, Brazil.
Appl Environ Microbiol. 2025 Feb 19;91(2):e0110924. doi: 10.1128/aem.01109-24. Epub 2025 Jan 10.
is an anaerobic and thermophilic bacterium that has been genetically engineered for ethanol production at very high yields. However, the underlying reactions responsible for electron flow, redox equilibrium, and how they relate to ethanol production in this microbe are not fully elucidated. Therefore, we performed a series of genetic manipulations to investigate the contribution of hydrogenase genes to high ethanol yield, generating evidence for the importance of hydrogen-reacting enzymes in ethanol production. Our results indicate that a high ethanol yield, >85% of the theoretical maximum, only occurs when the , and genes are all present together, while the gene is absent. We propose that the products of these three gene clusters facilitate an NADPH-generating reaction via hydrogen cycling, with a stoichiometry comparable with a canonical ferredoxin:NADP oxidoreductase (FNOR; EC 1.18.1.2) reaction. The hypothesized mechanism provides a balance of nicotinamide cofactors and facilitates ferredoxin recycling, leading to progress in optimizing the energy conversion of biomass-derived sugars to ethanol.
Our study elucidates the crucial role of electron flow and redox balancing mechanisms in improving ethanol yields from renewable biomass. We delve into the mechanism of electron transfer, highlighting the potential of key genes to be leveraged for enhanced ethanol production in anaerobic microbial species. We suggest by genetic investigation the existence of a novel Ferredoxin:NADP+ Oxidoreductase (FNOR) reaction, comprising HfsD, HydAB, and NfnAB enzymes, as a promising avenue for achieving balanced stoichiometry and efficient ethanol synthesis. Our findings not only advance the understanding of microbial metabolism but also offer practical insights for developing strategies to improve bioenergy production and sustainability.
是一种厌氧嗜热细菌,已通过基因工程改造以实现高产乙醇。然而,负责电子流、氧化还原平衡以及它们如何与这种微生物中的乙醇生产相关的潜在反应尚未完全阐明。因此,我们进行了一系列基因操作,以研究氢化酶基因对高乙醇产量的贡献,为氢反应酶在乙醇生产中的重要性提供了证据。我们的结果表明,只有当 、 和 基因同时存在且 基因不存在时,才会出现高于理论最大值85%的高乙醇产量。我们提出,这三个基因簇的产物通过氢循环促进生成NADPH的反应,其化学计量与典型的铁氧化还原蛋白:NADP氧化还原酶(FNOR;EC 1.18.1.2)反应相当。假设的机制提供了烟酰胺辅因子的平衡,并促进铁氧化还原蛋白的循环利用,从而在优化生物质衍生糖向乙醇的能量转化方面取得进展。
我们的研究阐明了电子流和氧化还原平衡机制在提高可再生生物质乙醇产量方面的关键作用。我们深入研究了电子转移机制,突出了关键基因在厌氧微生物物种中提高乙醇产量方面的潜力。我们通过基因研究表明存在一种新型的铁氧化还原蛋白:NADP + 氧化还原酶(FNOR)反应,包括HfsD、HydAB和NfnAB酶,这是实现平衡化学计量和高效乙醇合成的一个有前景的途径。我们的发现不仅推进了对微生物代谢的理解,还为制定改善生物能源生产和可持续性的策略提供了实际见解。