Suppr超能文献

用于高性能含能复合材料的3-(四唑-5-基)三唑配合物与高氯酸铵的组装

Assembly of 3-(Tetrazol-5-yl)triazole Complexes with Ammonium Perchlorate for High-Performance Energetic Composites.

作者信息

Meng Ke-Juan, Xiong Kunyu, Hussain Iftikhar, Tian Momang, Ma Xinwen, Li Yuxiang, Yan Qi-Long, Zhang Kaili

机构信息

Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, China.

State Key Laboratory on Solid Rocket Propulsion, Northwestern Polytechnical University, Xi'an 710072, China.

出版信息

ACS Appl Mater Interfaces. 2025 Jan 22;17(3):5391-5400. doi: 10.1021/acsami.4c20164. Epub 2025 Jan 10.

Abstract

Advanced energetic composites possess promising properties and wide-ranging applications in explosives and propellants. Nonetheless, most metal-based energetic composites present significant challenges due to surface oxidation and low-pressure output. This study introduces a facile method to develop energetic composites Cutztr@AP through the intermolecular assembly of nitrogen-rich energetic coordination polymers and high-energy oxidant ammonium perchlorate (AP). Morphological analysis reveals the unique structure of Cutztr@AP, where Cutztr is distributed throughout the interior and surface of the AP particles. The nonisothermal thermodynamic analysis reveals a heat release of 2378.2 J g for Cutztr@AP, outperforming the Cutztr/AP achieved through ultrasonic mixing (2000 J g). Notably, Cutztr@AP exhibits promising combustion and pressure output performances, including a significantly shorter duration, a larger flame area, and higher pressure values. This novel and facile preparation technique and microstructure design approach holds significant promise for high-performance propellants, gas generators, and other related applications.

摘要

先进的含能复合材料具有良好的性能,在炸药和推进剂中有着广泛的应用。然而,大多数金属基含能复合材料由于表面氧化和低压输出而面临重大挑战。本研究介绍了一种简便的方法,通过富氮含能配位聚合物与高能氧化剂高氯酸铵(AP)的分子间组装来制备含能复合材料Cutztr@AP。形态分析揭示了Cutztr@AP的独特结构,其中Cutztr分布在AP颗粒的内部和表面。非等温热力学分析表明,Cutztr@AP的热释放量为2378.2 J/g,优于通过超声混合获得的Cutztr/AP(2000 J/g)。值得注意的是,Cutztr@AP表现出良好的燃烧和压力输出性能,包括明显更短的持续时间、更大的火焰面积和更高的压力值。这种新颖且简便的制备技术和微观结构设计方法在高性能推进剂、气体发生器及其他相关应用方面具有巨大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dba/11758780/8189a88f00a4/am4c20164_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验