Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
Institut für Biologie/Bakterienphysiologie, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany.
Cell. 2020 Oct 1;183(1):244-257.e16. doi: 10.1016/j.cell.2020.08.016. Epub 2020 Sep 14.
Many bacteria use the flagellum for locomotion and chemotaxis. Its bidirectional rotation is driven by a membrane-embedded motor, which uses energy from the transmembrane ion gradient to generate torque at the interface between stator units and rotor. The structural organization of the stator unit (MotAB), its conformational changes upon ion transport, and how these changes power rotation of the flagellum remain unknown. Here, we present ~3 Å-resolution cryoelectron microscopy reconstructions of the stator unit in different functional states. We show that the stator unit consists of a dimer of MotB surrounded by a pentamer of MotA. Combining structural data with mutagenesis and functional studies, we identify key residues involved in torque generation and present a detailed mechanistic model for motor function and switching of rotational direction.
许多细菌利用鞭毛进行运动和趋化作用。它的双向旋转是由一个嵌入膜中的马达驱动的,该马达利用跨膜离子梯度的能量,在定子单元和转子之间的界面上产生扭矩。定子单元(MotAB)的结构组织、离子运输时的构象变化,以及这些变化如何为鞭毛的旋转提供动力,这些仍然未知。在这里,我们呈现了不同功能状态下定子单元的约 3Å 分辨率的冷冻电子显微镜重建结构。我们表明,定子单元由 MotB 的二聚体组成,周围环绕着 MotA 的五聚体。结合结构数据与突变和功能研究,我们确定了参与扭矩产生的关键残基,并提出了一个用于马达功能和旋转方向切换的详细机制模型。