Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
Central Oxford Structural Molecular Imaging Centre, University of Oxford, Oxford, UK.
Nat Microbiol. 2020 Dec;5(12):1553-1564. doi: 10.1038/s41564-020-0788-8. Epub 2020 Sep 14.
The bacterial flagellum is the prototypical protein nanomachine and comprises a rotating helical propeller attached to a membrane-embedded motor complex. The motor consists of a central rotor surrounded by stator units that couple ion flow across the cytoplasmic membrane to generate torque. Here, we present the structures of the stator complexes from Clostridium sporogenes, Bacillus subtilis and Vibrio mimicus, allowing interpretation of the extensive body of data on stator mechanism. The structures reveal an unexpected asymmetric AB subunit assembly where the five A subunits enclose the two B subunits. Comparison to structures of other ion-driven motors indicates that this AB architecture is fundamental to bacterial systems that couple energy from ion flow to generate mechanical work at a distance and suggests that such events involve rotation in the motor structures.
细菌鞭毛是典型的蛋白质纳米机器,由一个旋转的螺旋桨附着在一个膜嵌入的马达复合物上。该马达由一个中央转子组成,周围是定子单元,这些定子单元将离子流穿过细胞质膜耦合起来,以产生扭矩。在这里,我们展示了来自梭状芽胞杆菌、枯草芽孢杆菌和威氏弧菌的定子复合物的结构,从而可以解释关于定子机制的大量数据。这些结构揭示了一种意想不到的非对称 AB 亚基组装方式,其中五个 A 亚基包围着两个 B 亚基。与其他离子驱动马达的结构比较表明,这种 AB 结构是将离子流能量耦合起来,在远距离产生机械功的细菌系统的基础,并且表明这种事件涉及到马达结构的旋转。