Department of Biology, Loyola University Chicago, Chicago, Illinois.
Program in Bioinformatics, Loyola University Chicago, Chicago, Illinois.
Cancer Epidemiol Biomarkers Prev. 2023 Sep 1;32(9):1198-1207. doi: 10.1158/1055-9965.EPI-23-0309.
Predicting protein levels from genotypes for proteome-wide association studies (PWAS) may provide insight into the mechanisms underlying cancer susceptibility.
We performed PWAS of breast, endometrial, ovarian, and prostate cancers and their subtypes in several large European-ancestry discovery consortia (effective sample size: 237,483 cases/317,006 controls) and tested the results for replication in an independent European-ancestry GWAS (31,969 cases/410,350 controls). We performed PWAS using the cancer GWAS summary statistics and two sets of plasma protein prediction models, followed by colocalization analysis.
Using Atherosclerosis Risk in Communities (ARIC) models, we identified 93 protein-cancer associations [false discovery rate (FDR) < 0.05]. We then performed a meta-analysis of the discovery and replication PWAS, resulting in 61 significant protein-cancer associations (FDR < 0.05). Ten of 15 protein-cancer pairs that could be tested using Trans-Omics for Precision Medicine (TOPMed) protein prediction models replicated with the same directions of effect in both cancer GWAS (P < 0.05). To further support our results, we applied Bayesian colocalization analysis and found colocalized SNPs for SERPINA3 protein levels and prostate cancer (posterior probability, PP = 0.65) and SNUPN protein levels and breast cancer (PP = 0.62).
We used PWAS to identify potential biomarkers of hormone-related cancer risk. SNPs in SERPINA3 and SNUPN did not reach genome-wide significance for cancer in the original GWAS, highlighting the power of PWAS for novel locus discovery, with the added advantage of providing directions of protein effect.
PWAS and colocalization are promising methods to identify potential molecular mechanisms underlying complex traits.
通过全蛋白质组关联研究 (PWAS) 从基因型预测蛋白质水平,可能有助于深入了解癌症易感性的潜在机制。
我们在几个大型欧洲血统的发现联盟中进行了乳腺癌、子宫内膜癌、卵巢癌和前列腺癌及其亚型的 PWAS(有效样本量:237483 例病例/317006 例对照),并在独立的欧洲血统 GWAS(31969 例病例/410350 例对照)中对结果进行了复制测试。我们使用癌症 GWAS 汇总统计数据和两套血浆蛋白预测模型进行 PWAS,然后进行共定位分析。
使用动脉粥样硬化风险社区 (ARIC) 模型,我们确定了 93 个蛋白-癌症关联[错误发现率 (FDR) < 0.05]。然后,我们对发现和复制 PWAS 进行了荟萃分析,得出了 61 个显著的蛋白-癌症关联(FDR < 0.05)。在可使用转化组学精准医学 (TOPMed) 蛋白预测模型进行测试的 15 个蛋白-癌症对中,有 10 对在两个癌症 GWAS 中具有相同的效应方向,复制结果具有统计学意义(P < 0.05)。为了进一步支持我们的结果,我们应用了贝叶斯共定位分析,发现了 SERPINA3 蛋白水平与前列腺癌(后验概率,PP = 0.65)和 SNUPN 蛋白水平与乳腺癌(PP = 0.62)的共定位 SNP。
我们使用 PWAS 来识别潜在的激素相关癌症风险的生物标志物。在原始 GWAS 中,SERPINA3 和 SNUPN 中的 SNP 并未达到癌症的全基因组显著性,这突出了 PWAS 对新基因座发现的强大作用,同时还提供了蛋白效应的方向。
PWAS 和共定位是识别复杂性状潜在分子机制的有前途的方法。