Steinfeldt Jakob, Wild Benjamin, Buergel Thore, Pietzner Maik, Upmeier Zu Belzen Julius, Vauvelle Andre, Hegselmann Stefan, Denaxas Spiros, Hemingway Harry, Langenberg Claudia, Landmesser Ulf, Deanfield John, Eils Roland
Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany.
Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Klinik/Centrum, Berlin, Germany.
Nat Commun. 2025 Jan 10;16(1):585. doi: 10.1038/s41467-025-55879-x.
The COVID-19 pandemic exposed a global deficiency of systematic, data-driven guidance to identify high-risk individuals. Here, we illustrate the utility of routinely recorded medical history to predict the risk for 1741 diseases across clinical specialties and support the rapid response to emerging health threats such as COVID-19. We developed a neural network to learn from health records of 502,489 UK Biobank participants. Importantly, we observed discriminative improvements over basic demographic predictors for 1546 (88.8%) endpoints. After transferring the unmodified risk models to the All of US cohort, we replicated these improvements for 1115 (78.9%) of 1414 investigated endpoints, demonstrating generalizability across healthcare systems and historically underrepresented groups. Ultimately, we showed how this approach could have been used to identify individuals vulnerable to severe COVID-19. Our study demonstrates the potential of medical history to support guidance for emerging pandemics by systematically estimating risk for thousands of diseases at once at minimal cost.
新冠疫情暴露了全球在识别高危个体方面缺乏系统的、数据驱动型指导的问题。在此,我们展示了常规记录的病史在预测各临床专科1741种疾病风险方面的效用,并支持对新冠疫情等新出现的健康威胁做出快速反应。我们开发了一个神经网络,以从502489名英国生物银行参与者的健康记录中学习。重要的是,我们观察到在1546个(88.8%)终点指标上,相比于基本人口统计学预测指标有显著改进。将未经修改的风险模型应用于美国全人群队列后,我们在1414个被研究终点指标中的1115个(78.9%)上重现了这些改进,证明了该模型在不同医疗系统以及历史上代表性不足的群体中的通用性。最终,我们展示了这种方法如何可用于识别易患重症新冠的个体。我们的研究证明了病史通过以最小成本一次性系统评估数千种疾病的风险,为应对新出现的大流行提供指导的潜力。