Suppr超能文献

在英国初级保健中检测未诊断的心房颤动:回顾性队列研究中机器学习预测算法的验证。

Detecting undiagnosed atrial fibrillation in UK primary care: Validation of a machine learning prediction algorithm in a retrospective cohort study.

机构信息

Imperial College Health Partners, London, UK.

Uxbridge, Bristol-Myers Squibb Pharmaceuticals Ltd., UK.

出版信息

Eur J Prev Cardiol. 2021 May 22;28(6):598-605. doi: 10.1177/2047487320942338.

Abstract

AIMS

To evaluate the ability of a machine learning algorithm to identify patients at high risk of atrial fibrillation in primary care.

METHODS

A retrospective cohort study was undertaken using the DISCOVER registry to validate an algorithm developed using a Clinical Practice Research Datalink (CPRD) dataset. The validation dataset included primary care patients in London, England aged ≥30 years from 1 January 2006 to 31 December 2013, without a diagnosis of atrial fibrillation in the prior 5 years. Algorithm performance metrics were sensitivity, specificity, positive predictive value, negative predictive value (NPV) and number needed to screen (NNS). Subgroup analysis of patients aged ≥65 years was also performed.

RESULTS

Of 2,542,732 patients in DISCOVER, the algorithm identified 604,135 patients suitable for risk assessment. Of these, 3.0% (17,880 patients) had a diagnosis of atrial fibrillation recorded before study end. The area under the curve of the receiver operating characteristic was 0.87, compared with 0.83 in algorithm development. The NNS was nine patients, matching the CPRD cohort. In patients aged ≥30 years, the algorithm correctly identified 99.1% of patients who did not have atrial fibrillation (NPV) and 75.0% of true atrial fibrillation cases (sensitivity). Among patients aged ≥65 years (n = 117,965), the NPV was 96.7% with 91.8% sensitivity.

CONCLUSIONS

This atrial fibrillation risk prediction algorithm, based on machine learning methods, identified patients at highest risk of atrial fibrillation. It performed comparably in a large, real-world population-based cohort and the developmental registry cohort. If implemented in primary care, the algorithm could be an effective tool for narrowing the population who would benefit from atrial fibrillation screening in the United Kingdom.

摘要

目的

评估机器学习算法在初级保健中识别心房颤动高危患者的能力。

方法

使用 DISCOVER 登记处进行回顾性队列研究,以验证使用临床实践研究数据链接 (CPRD) 数据集开发的算法。验证数据集包括 2006 年 1 月 1 日至 2013 年 12 月 31 日期间英格兰伦敦年龄≥30 岁的初级保健患者,在过去 5 年内没有心房颤动的诊断。算法性能指标包括敏感性、特异性、阳性预测值、阴性预测值 (NPV) 和需要筛查的数量 (NNS)。还对年龄≥65 岁的患者进行了亚组分析。

结果

在 DISCOVER 中,2542732 名患者中,该算法确定了 604135 名适合风险评估的患者。其中,3.0%(17880 名患者)在研究结束前有记录的心房颤动诊断。接受者操作特征曲线下的面积为 0.87,而在算法开发中为 0.83。NNS 为 9 名患者,与 CPRD 队列相匹配。在年龄≥30 岁的患者中,该算法正确识别了 99.1%未发生心房颤动的患者(NPV)和 75.0%的真实心房颤动病例(敏感性)。在年龄≥65 岁的患者中(n=117965),NPV 为 96.7%,敏感性为 91.8%。

结论

基于机器学习方法的这种心房颤动风险预测算法可识别出发生心房颤动风险最高的患者。它在大型真实人群队列和开发性登记处队列中的表现相当。如果在初级保健中实施,该算法可能是一种有效的工具,可以缩小在英国接受心房颤动筛查的人群。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验