Yaşar Yıldız Songül
Department of Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Istanbul, 34700, Turkey.
World J Microbiol Biotechnol. 2025 Jan 11;41(2):30. doi: 10.1007/s11274-024-04240-3.
Thermomonas hydrothermalis, a thermophilic bacterium isolated from hot springs, exhibits unique genomic features that underpin its adaptability to extreme environments and its potential in industrial biotechnology. In this study, we present a comparative genomic analysis of two strains, DSM 14834 and HOT.CON.106, revealing distinct metabolic pathways and stress response mechanisms. The genome annotation highlighted strain-specific variations, such as enhanced motility and chemotaxis capabilities in HOT.CON.106 and a stronger genomic stability emphasis in DSM 14834. Comparative analysis with other Thermomonas species demonstrated that T. hydrothermalis possesses a unique genomic architecture, including genes for thermostable enzymes (e.g., amylases and pullulanases) and secondary metabolite biosynthesis. These enzymes and metabolites have significant industrial potential in high-temperature processes such as bioenergy production, bioplastics synthesis, and bioremediation. The findings underscore the relative differentiation between the strains and their broader implications for sustainable biotechnology, offering a basis for further exploration of thermophilic microorganisms in industrial applications.
嗜热栖热单胞菌是一种从温泉中分离出的嗜热细菌,具有独特的基因组特征,这些特征支撑着它对极端环境的适应性及其在工业生物技术中的潜力。在本研究中,我们对DSM 14834和HOT.CON.106这两个菌株进行了比较基因组分析,揭示了不同的代谢途径和应激反应机制。基因组注释突出了菌株特异性变异,例如HOT.CON.106中增强的运动性和趋化能力,以及DSM 14834中对基因组稳定性更强的强调。与其他栖热单胞菌属物种的比较分析表明,嗜热栖热单胞菌具有独特的基因组结构,包括编码热稳定酶(如淀粉酶和支链淀粉酶)和次级代谢产物生物合成的基因。这些酶和代谢产物在生物能源生产、生物塑料合成和生物修复等高温度过程中具有重大的工业潜力。这些发现强调了菌株之间的相对差异及其对可持续生物技术的更广泛影响,为在工业应用中进一步探索嗜热微生物提供了基础。